A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations

A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 2 : pp. 240–268

Abstract

A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma system is presented. The method uses a second or third order discontinuous Galerkin spatial discretization and a third order TVD Runge-Kutta time stepping scheme. The method is benchmarked against an analytic solution of a dispersive electron acoustic square pulse as well as the two-fluid electromagnetic shock [1] and existing numerical solutions to the GEM challenge magnetic reconnection problem [2]. The algorithm can be generalized to arbitrary geometries and three dimensions. An approach to maintaining small gauge errors based on error propagation is suggested.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.250509.210610a

Communications in Computational Physics, Vol. 9 (2011), Iss. 2 : pp. 240–268

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:   

  1. Stability of Nonlinear Convection–Diffusion–Reaction Systems in Discontinuous Galerkin Methods

    Michoski, C. | Alexanderian, A. | Paillet, C. | Kubatko, E. J. | Dawson, C.

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 2 P.516

    https://doi.org/10.1007/s10915-016-0256-z [Citations: 8]
  2. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    Balsara, Dinshaw S. | Amano, Takanobu | Garain, Sudip | Kim, Jinho

    Journal of Computational Physics, Vol. 318 (2016), Iss. P.169

    https://doi.org/10.1016/j.jcp.2016.05.006 [Citations: 43]
  3. Monolithic Multigrid Methods for Magnetohydrodynamics

    Adler, James H. | Benson, Thomas R. | Cyr, Eric C. | Farrell, Patrick E. | MacLachlan, Scott P. | Tuminaro, Ray S.

    SIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 5 P.S70

    https://doi.org/10.1137/20M1348364 [Citations: 10]
  4. A selective immersed discontinuous Galerkin method for elliptic interface problems

    He, Xiaoming | Lin, Tao | Lin, Yanping

    Mathematical Methods in the Applied Sciences, Vol. 37 (2014), Iss. 7 P.983

    https://doi.org/10.1002/mma.2856 [Citations: 26]
  5. Modeling Radio Communication Blackout and Blackout Mitigation in Hypersonic Vehicles

    Kundrapu, Madhusudhan | Loverich, John | Beckwith, Kristian | Stoltz, Peter | Shashurin, Alexey | Keidar, Michael

    Journal of Spacecraft and Rockets, Vol. 52 (2015), Iss. 3 P.853

    https://doi.org/10.2514/1.A33122 [Citations: 82]
  6. Proceedings of the 4th International Symposium on Plasma and Energy Conversion

    Co-simulation Model of EM Characteristics of Plasma Sheath Based on CFD and PIC Methods

    Chen, Yuqing | Wu, Tong | Zhao, Lishan | Wang, Lei | He, Juntao

    2023

    https://doi.org/10.1007/978-981-99-1576-7_28 [Citations: 0]
  7. Experimental Characterization of the Stagnation Layer between Two Obliquely Merging Supersonic Plasma Jets

    Merritt, E. C. | Moser, A. L. | Hsu, S. C. | Loverich, J. | Gilmore, M.

    Physical Review Letters, Vol. 111 (2013), Iss. 8

    https://doi.org/10.1103/PhysRevLett.111.085003 [Citations: 43]
  8. The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov–Maxwell equations

    Koshkarov, O. | Manzini, G. | Delzanno, G.L. | Pagliantini, C. | Roytershteyn, V.

    Computer Physics Communications, Vol. 264 (2021), Iss. P.107866

    https://doi.org/10.1016/j.cpc.2021.107866 [Citations: 13]
  9. Nautilus: A Tool For Modeling Fluid Plasmas

    Loverich, John | Zhou, Sean C. D | Beckwith, Kris | Kundrapu, Madhusudhan | Loh, Mike | Mahalingam, Sudhakar | Stoltz, Peter | Hakim, Ammar

    51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2013),

    https://doi.org/10.2514/6.2013-1185 [Citations: 9]
  10. Fully-implicit finite volume method for the ideal two-fluid plasma model

    Alvarez Laguna, A. | Ozak, N. | Lani, A. | Deconinck, H. | Poedts, S.

    Computer Physics Communications, Vol. 231 (2018), Iss. P.31

    https://doi.org/10.1016/j.cpc.2018.05.006 [Citations: 22]
  11. Two-fluid and kinetic transport physics of Kelvin–Helmholtz instabilities in nonuniform low-beta plasmas

    Vogman, G. V. | Hammer, J. H. | Shumlak, U. | Farmer, W. A.

    Physics of Plasmas, Vol. 27 (2020), Iss. 10

    https://doi.org/10.1063/5.0014489 [Citations: 10]
  12. Application of a fourth-order accurate finite-volume method with adaptive refinement in space and time to multifluid plasma simulations

    Polak, Scott | Gao, Xinfeng

    Communications in Applied Mathematics and Computational Science, Vol. 19 (2024), Iss. 1 P.57

    https://doi.org/10.2140/camcos.2024.19.57 [Citations: 0]
  13. Discontinuous Galerkin methods for plasma physics in the scrape-off layer of tokamaks

    Michoski, C. | Meyerson, D. | Isaac, T. | Waelbroeck, F.

    Journal of Computational Physics, Vol. 274 (2014), Iss. P.898

    https://doi.org/10.1016/j.jcp.2014.06.058 [Citations: 10]
  14. The magnetised Richtmyer–Meshkov instability in two-fluid plasmas

    Bond, D. | Wheatley, V. | Li, Y. | Samtaney, R. | Pullin, D. I.

    Journal of Fluid Mechanics, Vol. 903 (2020), Iss.

    https://doi.org/10.1017/jfm.2020.661 [Citations: 7]
  15. A multispecies, multifluid model for laser–induced counterstreaming plasma simulations

    Ghosh, D. | Chapman, T.D. | Berger, R.L. | Dimits, A. | Banks, J.W.

    Computers & Fluids, Vol. 186 (2019), Iss. P.38

    https://doi.org/10.1016/j.compfluid.2019.04.012 [Citations: 13]
  16. A Versatile Numerical Method for the Multi-Fluid Plasma Model in Partially- and Fully-Ionized Plasmas

    Alvarez-Laguna, A. | Ozak, N. | Lani, A. | Mansour, N. N. | Deconinck, H. | Poedts, S.

    Journal of Physics: Conference Series, Vol. 1031 (2018), Iss. P.012015

    https://doi.org/10.1088/1742-6596/1031/1/012015 [Citations: 7]
  17. Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model

    Li, Rui | Gao, Yali | Chen, Jie | Zhang, Li | He, Xiaoming | Chen, Zhangxin

    Advances in Computational Mathematics, Vol. 46 (2020), Iss. 2

    https://doi.org/10.1007/s10444-020-09764-4 [Citations: 18]
  18. An implicit monolithic AFC stabilization method for the CG finite element discretization of the fully-ionized ideal multifluid electromagnetic plasma system

    Crockatt, Michael M. | Mabuza, Sibusiso | Shadid, John N. | Conde, Sidafa | Smith, Thomas M. | Pawlowski, Roger P.

    Journal of Computational Physics, Vol. 464 (2022), Iss. P.111228

    https://doi.org/10.1016/j.jcp.2022.111228 [Citations: 4]
  19. A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model

    Sousa, E.M. | Shumlak, U.

    Journal of Computational Physics, Vol. 326 (2016), Iss. P.56

    https://doi.org/10.1016/j.jcp.2016.08.044 [Citations: 20]
  20. Computationally efficient high-fidelity plasma simulations by coupling multi-species kinetic and multi-fluid models on decomposed domains

    Datta, I.A.M. | Shumlak, U.

    Journal of Computational Physics, Vol. 483 (2023), Iss. P.112073

    https://doi.org/10.1016/j.jcp.2023.112073 [Citations: 4]
  21. An Improved Vector Wave Equation-Based Discontinuous Galerkin Time Domain Method and Its Hybridization With Maxwell’s Equation-Based Discontinuous Galerkin Time Domain Method

    Tian, Cheng-Yi | Shi, Yan | Chan, Chi Hou

    IEEE Transactions on Antennas and Propagation, Vol. 66 (2018), Iss. 11 P.6170

    https://doi.org/10.1109/TAP.2018.2866992 [Citations: 27]
  22. Effects of Magnetic Perturbation on Reconnection and Heating in the Solar Corona

    Hammoud, Mostafa M. | Antar, Ghassan Y. | Dayeh, Maher A. | Darwish, Marwan S. | El Eid, Mounib F.

    The Astrophysical Journal, Vol. 903 (2020), Iss. 2 P.95

    https://doi.org/10.3847/1538-4357/abb807 [Citations: 0]
  23. Z-pinch fusion

    Shumlak, U.

    Journal of Applied Physics, Vol. 127 (2020), Iss. 20

    https://doi.org/10.1063/5.0004228 [Citations: 47]
  24. A solver based on pseudo-spectral analytical time-domain method for the two-fluid plasma model

    Morel, B. | Giust, R. | Ardaneh, K. | Courvoisier, F.

    Scientific Reports, Vol. 11 (2021), Iss. 1

    https://doi.org/10.1038/s41598-021-82173-9 [Citations: 6]
  25. A multi-species 13-moment model for moderately collisional plasmas

    Miller, S. T. | Shumlak, U.

    Physics of Plasmas, Vol. 23 (2016), Iss. 8

    https://doi.org/10.1063/1.4960041 [Citations: 19]
  26. Physics-Based-Adaptive Plasma Model for High-Fidelity Numerical Simulations

    Ho, Andrew | Datta, Iman Anwar Michael | Shumlak, Uri

    Frontiers in Physics, Vol. 6 (2018), Iss.

    https://doi.org/10.3389/fphy.2018.00105 [Citations: 18]
  27. Fourth-order accurate numerical modeling of the multi-fluid plasma equations with adaptive mesh refinement

    Polak, S. | Gao, X.

    Computer Physics Communications, Vol. 290 (2023), Iss. P.108777

    https://doi.org/10.1016/j.cpc.2023.108777 [Citations: 2]
  28. High-order two-fluid plasma solver for direct numerical simulations of plasma flows with full transport phenomena

    Li, Z. | Livescu, D.

    Physics of Plasmas, Vol. 26 (2019), Iss. 1

    https://doi.org/10.1063/1.5082190 [Citations: 6]
  29. An AUSM-based Algorithm for Solving the Coupled Navier-Stokes and Maxwell Equations

    Thompson, Richard J. | Wilson, Andrew | Moeller, Trevor M. | Merkle, Charles

    44th AIAA Plasmadynamics and Lasers Conference, (2013),

    https://doi.org/10.2514/6.2013-3005 [Citations: 2]
  30. Comparison of discontinuous Galerkin time integration schemes for the solution of flow problems with deformable domains

    Bublík, Ondřej | Vimmr, Jan | Jonášová, Alena

    Applied Mathematics and Computation, Vol. 267 (2015), Iss. P.329

    https://doi.org/10.1016/j.amc.2015.03.063 [Citations: 5]
  31. Foundations of the blended isogeometric discontinuous Galerkin (BIDG) method

    Michoski, C. | Chan, J. | Engvall, L. | Evans, J.A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 305 (2016), Iss. P.658

    https://doi.org/10.1016/j.cma.2016.02.015 [Citations: 18]
  32. Second Order Divergence Constraint Preserving Entropy Stable Finite Difference Schemes for Ideal Two-Fluid Plasma Flow Equations

    Agnihotri, Jaya | Bhoriya, Deepak | Kumar, Harish | Chandrashekhar, Praveen | Balsara, Dinshaw S.

    Journal of Scientific Computing, Vol. 101 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02685-0 [Citations: 0]
  33. An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasmas at low-pressure

    Alvarez Laguna, A. | Pichard, T. | Magin, T. | Chabert, P. | Bourdon, A. | Massot, M.

    Journal of Computational Physics, Vol. 419 (2020), Iss. P.109634

    https://doi.org/10.1016/j.jcp.2020.109634 [Citations: 8]
  34. A GPU-enabled implicit Finite Volume solver for the ideal two-fluid plasma model on unstructured grids

    Alonso Asensio, Isaac | Alvarez Laguna, Alejandro | Aissa, Mohamed Hassanine | Poedts, Stefaan | Ozak, Nataly | Lani, Andrea

    Computer Physics Communications, Vol. 239 (2019), Iss. P.16

    https://doi.org/10.1016/j.cpc.2019.01.019 [Citations: 11]
  35. IMEX and exact sequence discretization of the multi-fluid plasma model

    Miller, S.T. | Cyr, E.C. | Shadid, J.N. | Kramer, R.M.J. | Phillips, E.G. | Conde, S. | Pawlowski, R.P.

    Journal of Computational Physics, Vol. 397 (2019), Iss. P.108806

    https://doi.org/10.1016/j.jcp.2019.05.052 [Citations: 13]
  36. Simulation study of alleviating the communication blackout using high-power microwave irradiating plasma sheaths

    Chen, Yuqing | Wang, Lei | Zhao, Lishan | Ling, Junpu | Ge, Xingjun | He, Juntao

    Physics of Plasmas, Vol. 29 (2022), Iss. 12

    https://doi.org/10.1063/5.0105947 [Citations: 2]
  37. Analytical and computational study of the ideal full two-fluid plasma model and asymptotic approximations for Hall-magnetohydrodynamics

    Srinivasan, B. | Shumlak, U.

    Physics of Plasmas, Vol. 18 (2011), Iss. 9

    https://doi.org/10.1063/1.3640811 [Citations: 49]
  38. A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes

    Alvarez Laguna, A. | Lani, A. | Deconinck, H. | Mansour, N.N. | Poedts, S.

    Journal of Computational Physics, Vol. 318 (2016), Iss. P.252

    https://doi.org/10.1016/j.jcp.2016.04.058 [Citations: 35]
  39. High-order finite element method for plasma modeling

    Shumlak, U. | Lilly, R. | Miller, S. | Reddell, N. | Sousa, E.

    2013 19th IEEE Pulsed Power Conference (PPC), (2013), P.1

    https://doi.org/10.1109/PPC.2013.6627593 [Citations: 2]
  40. Development of five-moment two-fluid modeling for Z-pinch physics

    Meier, E. T. | Shumlak, U.

    Physics of Plasmas, Vol. 28 (2021), Iss. 9

    https://doi.org/10.1063/5.0058420 [Citations: 8]
  41. Electromagnetic extension of the Dory–Guest–Harris instability as a benchmark for Vlasov–Maxwell continuum kinetic simulations of magnetized plasmas

    Datta, I. A. M. | Crews, D. W. | Shumlak, U.

    Physics of Plasmas, Vol. 28 (2021), Iss. 7

    https://doi.org/10.1063/5.0057230 [Citations: 3]
  42. A Hybridized Discontinuous Galerkin Method for the Nonlinear Korteweg–de Vries Equation

    Samii, Ali | Panda, Nishant | Michoski, Craig | Dawson, Clint

    Journal of Scientific Computing, Vol. 68 (2016), Iss. 1 P.191

    https://doi.org/10.1007/s10915-015-0133-1 [Citations: 13]
  43. Computational extended magneto-hydrodynamical study of shock structure generated by flows past an obstacle

    Zhao, Xuan | Seyler, C. E.

    Physics of Plasmas, Vol. 22 (2015), Iss. 7

    https://doi.org/10.1063/1.4923426 [Citations: 8]