Lattice Boltzmann Methods for Multiphase Flow Simulations across Scales

Lattice Boltzmann Methods for Multiphase Flow Simulations across Scales

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 2 : pp. 269–296

Abstract

The simulation of multiphase flows is an outstanding challenge, due to the inherent complexity of the underlying physical phenomena and to the fact that multiphase flows are very diverse in nature, and so are the laws governing their dynamics. In the last two decades, a new class of mesoscopic methods, based on minimal lattice formulation of Boltzmann kinetic equation, has gained significant interest as an efficient alternative to continuum methods based on the discretization of the NS equations for non ideal fluids. In this paper, three different multiphase models based on the lattice Boltzmann method (LBM) are discussed, in order to assess the capability of the method to deal with multiphase flows on a wide spectrum of operating conditions and multiphase phenomena. In particular, the range of application of each method is highlighted and its effectiveness is qualitatively assessed through comparison with numerical and experimental literature data.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.221209.250510a

Communications in Computational Physics, Vol. 9 (2011), Iss. 2 : pp. 269–296

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    28

Keywords:   

  1. Hybridized method of pseudopotential lattice Boltzmann and cubic-plus-association equation of state assesses thermodynamic characteristics of associating fluids

    Asadi, Mohammad Bagher | Zendehboudi, Sohrab

    Physical Review E, Vol. 100 (2019), Iss. 4

    https://doi.org/10.1103/PhysRevE.100.043302 [Citations: 7]
  2. MODELING OF BIFURCATION PHENOMENA IN SUDDENLY EXPANDED FLOWS WITH A NEW FINITE VOLUME LATTICE BOLTZMANN METHOD

    ZARGHAMI, AHAD | MAGHREBI, MOHAMMAD JAVAD | UBERTINI, STEFANO | SUCCI, SAURO

    International Journal of Modern Physics C, Vol. 22 (2011), Iss. 09 P.977

    https://doi.org/10.1142/S0129183111016737 [Citations: 12]
  3. Second-order force scheme for lattice Boltzmann model of shallow water flows

    Peng, Yong | Zhang, Jianmin | Meng, Jianping

    Journal of Hydraulic Research, Vol. 55 (2017), Iss. 4 P.592

    https://doi.org/10.1080/00221686.2017.1286392 [Citations: 17]
  4. A pseudopotential multiphase lattice Boltzmann model based on high-order difference

    Qin, Zhangrong | Zhao, Wanling | Chen, Yanyan | Zhang, Chaoying | Wen, Binghai

    International Journal of Heat and Mass Transfer, Vol. 127 (2018), Iss. P.234

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.002 [Citations: 10]
  5. On the Stability of the Finite Difference based Lattice Boltzmann Method

    El-Amin, M.F. | Sun, S. | Salama, A.

    Procedia Computer Science, Vol. 18 (2013), Iss. P.2101

    https://doi.org/10.1016/j.procs.2013.05.380 [Citations: 12]
  6. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows

    Lin, Chuandong | Xu, Aiguo | Zhang, Guangcai | Luo, Kai Hong | Li, Yingjun

    Physical Review E, Vol. 96 (2017), Iss. 5

    https://doi.org/10.1103/PhysRevE.96.053305 [Citations: 43]
  7. Lattice Boltzmann modeling of water entry problems

    Zarghami, A. | Falcucci, G. | Jannelli, E. | Succi, S. | Porfiri, M. | Ubertini, S.

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 12 P.1441012

    https://doi.org/10.1142/S0129183114410125 [Citations: 35]
  8. Deformation and regimes of liquid column during water exit of a partially submerged sphere using the front-tracking lattice Boltzmann method

    Hao, Haohao | Yu, Jianyang | Song, Yanping | Chen, Fu | Liu, Tian

    Journal of Fluids and Structures, Vol. 99 (2020), Iss. P.103152

    https://doi.org/10.1016/j.jfluidstructs.2020.103152 [Citations: 6]
  9. Numerical simulation of water free-surface flows through a front-tracking lattice Boltzmann approach

    Di Francesco, Silvia | Biscarini, Chiara | Manciola, Piergiorgio

    Journal of Hydroinformatics, Vol. 17 (2015), Iss. 1 P.1

    https://doi.org/10.2166/hydro.2014.028 [Citations: 20]
  10. Hybrid LBM-FVM solver for two-phase flow simulation

    Ma, Yihui | Xiao, Xiaoyu | Li, Wei | Desbrun, Mathieu | Liu, Xiaopei

    Journal of Computational Physics, Vol. 506 (2024), Iss. P.112920

    https://doi.org/10.1016/j.jcp.2024.112920 [Citations: 0]
  11. A Comparison Between the Interpolated Bounce-Back Scheme and the Immersed Boundary Method to Treat Solid Boundary Conditions for Laminar Flows in the Lattice Boltzmann Framework

    De Rosis, Alessandro | Ubertini, Stefano | Ubertini, Francesco

    Journal of Scientific Computing, Vol. 61 (2014), Iss. 3 P.477

    https://doi.org/10.1007/s10915-014-9834-0 [Citations: 62]
  12. Direct numerical evidence of stress-induced cavitation

    Falcucci, G. | Jannelli, E. | Ubertini, S. | Succi, S.

    Journal of Fluid Mechanics, Vol. 728 (2013), Iss. P.362

    https://doi.org/10.1017/jfm.2013.271 [Citations: 52]
  13. Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods

    Rosis, Alessandro De | Falcucci, Giacomo | Porfiri, Maurizio | Ubertini, Francesco | Ubertini, Stefano

    Computers & Structures, Vol. 138 (2014), Iss. P.24

    https://doi.org/10.1016/j.compstruc.2014.02.007 [Citations: 51]
  14. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts

    Zu, Y. Q. | He, S.

    Physical Review E, Vol. 87 (2013), Iss. 4

    https://doi.org/10.1103/PhysRevE.87.043301 [Citations: 242]
  15. Handbook of Fluid Dynamics, Second Edition

    Complex Flow Simulation via Lattice Boltzmann Method

    Falcucci, G | Melchionna, S | Ubertini, S | Succi, Sauro

    2016

    https://doi.org/10.1201/b19031-44 [Citations: 1]
  16. A lattice Boltzmann model for multiphase flows interacting with deformable bodies

    De Rosis, Alessandro

    Advances in Water Resources, Vol. 73 (2014), Iss. P.55

    https://doi.org/10.1016/j.advwatres.2014.07.003 [Citations: 21]
  17. Effect of droplet deformability on shear thinning in a cylindrical channel

    Silva, Danilo P. F. | Coelho, Rodrigo C. V. | da Gama, Margarida M. Telo | Araújo, Nuno A. M.

    Physical Review E, Vol. 107 (2023), Iss. 3

    https://doi.org/10.1103/PhysRevE.107.035106 [Citations: 3]
  18. Modeling pattern formation in soft flowing crystals

    Montessori, Andrea | Lauricella, Marco | Tiribocchi, Adriano | Succi, Sauro

    Physical Review Fluids, Vol. 4 (2019), Iss. 7

    https://doi.org/10.1103/PhysRevFluids.4.072201 [Citations: 31]
  19. Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation

    Peng, Chi | Tian, Shouceng | Li, Gensheng | Sukop, Michael C.

    Physical Review E, Vol. 98 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.98.023305 [Citations: 36]
  20. Efficient kinetic simulation of two-phase flows

    Li, Wei | Ma, Yihui | Liu, Xiaopei | Desbrun, Mathieu

    ACM Transactions on Graphics, Vol. 41 (2022), Iss. 4 P.1

    https://doi.org/10.1145/3528223.3530132 [Citations: 11]
  21. Direct Numerical Simulation of SCR Reactors through Kinetic Approach

    Krastev, Vesselin Krassimirov | Amati, Giorgio | Jannelli, Elio | Falcucci, Giacomo

    SAE Technical Paper Series, (2016),

    https://doi.org/10.4271/2016-01-0963 [Citations: 8]
  22. Lattice Boltzmann 2038

    Succi, Sauro

    EPL (Europhysics Letters), Vol. 109 (2015), Iss. 5 P.50001

    https://doi.org/10.1209/0295-5075/109/50001 [Citations: 169]
  23. Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method

    De Rosis, Alessandro | Falcucci, Giacomo | Ubertini, Stefano | Ubertini, Francesco

    Journal of Fluids and Structures, Vol. 49 (2014), Iss. P.516

    https://doi.org/10.1016/j.jfluidstructs.2014.05.010 [Citations: 52]
  24. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation

    Zu, Y. Q. | Li, A. D. | Wei, H.

    Physical Review E, Vol. 102 (2020), Iss. 5

    https://doi.org/10.1103/PhysRevE.102.053307 [Citations: 21]
  25. Direct and opposite droplet ejections from metal films induced by nanosecond laser pulses: experimental observation and lattice Boltzmann modeling

    Huang, Z G | Huang, Y J | Chen, Y H | Deng, Y | Zhao, Z Y

    Journal of Micromechanics and Microengineering, Vol. 29 (2019), Iss. 2 P.025001

    https://doi.org/10.1088/1361-6439/aaf461 [Citations: 2]
  26. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    De Rosis, Alessandro

    Advances in Water Resources, Vol. 73 (2014), Iss. P.97

    https://doi.org/10.1016/j.advwatres.2014.07.004 [Citations: 16]
  27. POROUS SUBSTRATE EFFECTS ON THERMAL FLOWS THROUGH A REV-SCALE FINITE VOLUME LATTICE BOLTZMANN MODEL

    ZARGHAMI, AHAD | FRANCESCO, SILVIA DI | BISCARINI, CHIARA

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 02 P.1350086

    https://doi.org/10.1142/S0129183113500861 [Citations: 26]
  28. Direct Numerical Simulation of Flow Induced Cavitation in Orifices

    Falcucci, Giacomo | Jannelli, Elio | Ubertini, Stefano | Bella, Gino

    SAE International Journal of Fuels and Lubricants, Vol. 6 (2013), Iss. 3 P.915

    https://doi.org/10.4271/2013-24-0005 [Citations: 4]
  29. On mathematical approaches to modelling slender liquid jets with a curved trajectory

    Decent, S. P. | Părău, E. I. | Simmons, M. J. H. | Uddin, J.

    Journal of Fluid Mechanics, Vol. 844 (2018), Iss. P.905

    https://doi.org/10.1017/jfm.2018.221 [Citations: 11]
  30. Progress in physical modelling and numerical simulation of phase transitions in cryogenic pool boiling and cavitation

    Petersen, K.J. | Rahbarimanesh, S. | Brinkerhoff, J.R.

    Applied Mathematical Modelling, Vol. 116 (2023), Iss. P.327

    https://doi.org/10.1016/j.apm.2022.11.028 [Citations: 3]
  31. Free surface dynamics in the impact of a rigid wedge - Part A

    Di Francesco, Silvia | Carlino, Martina

    (2018) P.420004

    https://doi.org/10.1063/1.5044007 [Citations: 0]
  32. Lattice Boltzmann Simulation of Cavitating Flows

    Falcucci, Giacomo | Ubertini, Stefano | Bella, Gino | Succi, Sauro

    Communications in Computational Physics, Vol. 13 (2013), Iss. 3 P.685

    https://doi.org/10.4208/cicp.291011.270112s [Citations: 36]
  33. Novel nonequilibrium steady states in multiple emulsions

    Tiribocchi, A. | Montessori, A. | Aime, S. | Milani, M. | Lauricella, M. | Succi, S. | Weitz, D.

    Physics of Fluids, Vol. 32 (2020), Iss. 1

    https://doi.org/10.1063/1.5134901 [Citations: 21]
  34. Numerical analysis of water exit for a sphere with constant velocity using the lattice Boltzmann method

    Haohao, Hao | Yanping, Song | Jianyang, Yu | Fu, Chen | Tian, Liu

    Applied Ocean Research, Vol. 84 (2019), Iss. P.163

    https://doi.org/10.1016/j.apor.2018.12.010 [Citations: 24]
  35. A three-dimensional pseudo-potential multiphase model with super-large density ratio and adjustable surface tension

    Yang, Zhichao | Qin, Zhangrong

    Computers & Fluids, Vol. 278 (2024), Iss. P.106318

    https://doi.org/10.1016/j.compfluid.2024.106318 [Citations: 0]
  36. Characterization of spontaneous imbibition dynamics in irregular channels by mesoscopic modeling

    Zheng, Jiangtao | Chen, Zhiqiang | Xie, Chiyu | Wang, Ziyan | Lei, Zhengdong | Ju, Yang | Wang, Moran

    Computers & Fluids, Vol. 168 (2018), Iss. P.21

    https://doi.org/10.1016/j.compfluid.2018.01.024 [Citations: 29]
  37. Simulation of self-assemblies of colloidal particles on the substrate using a lattice Boltzmann pseudo-solid model

    Liang, Gongyou | Zeng, Zhong | Chen, Yu | Onishi, Junya | Ohashi, Hirotada | Chen, Shiyi

    Journal of Computational Physics, Vol. 248 (2013), Iss. P.323

    https://doi.org/10.1016/j.jcp.2013.04.007 [Citations: 15]
  38. Implementation of contact line motion based on the phase-field lattice Boltzmann method

    Ju, Long | Guo, Zhaoli | Yan, Bicheng | Sun, Shuyu

    Physical Review E, Vol. 109 (2024), Iss. 4

    https://doi.org/10.1103/PhysRevE.109.045307 [Citations: 0]
  39. Lattice Fluid Dynamics: Thirty-five Years Down the Road

    Succi, Sauro

    Comptes Rendus. Mécanique, Vol. 350 (2024), Iss. S1 P.207

    https://doi.org/10.5802/crmeca.161 [Citations: 4]
  40. Extreme flow simulations reveal skeletal adaptations of deep-sea sponges

    Falcucci, Giacomo | Amati, Giorgio | Fanelli, Pierluigi | Krastev, Vesselin K. | Polverino, Giovanni | Porfiri, Maurizio | Succi, Sauro

    Nature, Vol. 595 (2021), Iss. 7868 P.537

    https://doi.org/10.1038/s41586-021-03658-1 [Citations: 81]
  41. Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids

    Zarghami, A. | Ubertini, S. | Succi, S.

    Computers & Fluids, Vol. 77 (2013), Iss. P.56

    https://doi.org/10.1016/j.compfluid.2013.02.018 [Citations: 31]
  42. Toward exascale design of soft mesoscale materials

    Succi, Sauro | Amati, Giorgio | Bonaccorso, Fabio | Lauricella, Marco | Bernaschi, M. | Montessori, Andrea | Tiribocchi, Adriano

    Journal of Computational Science, Vol. 46 (2020), Iss. P.101175

    https://doi.org/10.1016/j.jocs.2020.101175 [Citations: 7]
  43. Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method

    Xie, Jian.-Fei. | He, S. | Zu, Y. Q. | Lamy-Chappuis, B. | Yardley, B. W. D.

    Heat and Mass Transfer, Vol. 53 (2017), Iss. 8 P.2637

    https://doi.org/10.1007/s00231-017-2007-6 [Citations: 10]
  44. Lattice Boltzmann Finite Volume Formulation with Improved Stability

    Zarghami, A. | Maghrebi, M. J. | Ghasemi, J. | Ubertini, S.

    Communications in Computational Physics, Vol. 12 (2012), Iss. 1 P.42

    https://doi.org/10.4208/cicp.151210.140711a [Citations: 30]
  45. Diffusion dominated evaporation in multicomponent lattice Boltzmann simulations

    Hessling, Dennis | Xie, Qingguang | Harting, Jens

    The Journal of Chemical Physics, Vol. 146 (2017), Iss. 5

    https://doi.org/10.1063/1.4975024 [Citations: 19]
  46. Lattice Boltzmann Modeling for Chemical Engineering

    LBM for 2D and 3D chemical reactors

    Falcucci, Giacomo

    2020

    https://doi.org/10.1016/bs.ache.2020.04.004 [Citations: 0]
  47. Simulations of Droplet Coalescence in Simple Shear Flow

    Shardt, Orest | Derksen, J. J. | Mitra, Sushanta K.

    Langmuir, Vol. 29 (2013), Iss. 21 P.6201

    https://doi.org/10.1021/la304919p [Citations: 63]
  48. An engineering based approach for hydraulic computations in river flows

    Di Francesco, S. | Biscarini, C. | Pierleoni, A. | Manciola, P.

    (2016) P.270012

    https://doi.org/10.1063/1.4952051 [Citations: 1]
  49. Detailed Simulation of Complex Hydraulic Problems with Macroscopic and Mesoscopic Mathematical Methods

    Biscarini, Chiara | Di Francesco, Silvia | Nardi, Fernando | Manciola, Piergiorgio

    Mathematical Problems in Engineering, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/928309 [Citations: 24]
  50. A lattice Boltzmann-finite element model for two-dimensional fluid–structure interaction problems involving shallow waters

    De Rosis, Alessandro

    Advances in Water Resources, Vol. 65 (2014), Iss. P.18

    https://doi.org/10.1016/j.advwatres.2014.01.003 [Citations: 17]
  51. Mesoscopic simulation of non-ideal fluids with self-tuning of the equation of state

    Colosqui, Carlos E. | Falcucci, Giacomo | Ubertini, Stefano | Succi, Sauro

    Soft Matter, Vol. 8 (2012), Iss. 14 P.3798

    https://doi.org/10.1039/c2sm06353k [Citations: 70]
  52. Evaluation of the effective porosity of an open cell foam material for using in heat and mass transfer numerical simulations

    Soloveva, Olga | Solovev, Sergei | Zaripova, Rimma | Khamidullina, Faniia | Tyurina, Marina | Kankhva, V.

    E3S Web of Conferences, Vol. 258 (2021), Iss. P.11010

    https://doi.org/10.1051/e3sconf/202125811010 [Citations: 23]
  53. Thermal lattice Boltzmann simulations of natural convection with complex geometry

    Lin, Kuen-Hau | Liao, Chuan-Chieh | Lien, Shao-Yu | Lin, Chao-An

    Computers & Fluids, Vol. 69 (2012), Iss. P.35

    https://doi.org/10.1016/j.compfluid.2012.08.012 [Citations: 29]
  54. Kinetic-Based Multiphase Flow Simulation

    Li, Wei | Liu, Daoming | Desbrun, Mathieu | Huang, Jin | Liu, Xiaopei

    IEEE Transactions on Visualization and Computer Graphics, Vol. 27 (2021), Iss. 7 P.3318

    https://doi.org/10.1109/TVCG.2020.2972357 [Citations: 12]
  55. Evolution of water column pulled by partially submerged spheres with different velocities and submergence depths

    Guo, Chunyu | Liu, Tian | Hao, Haohao | Chang, Xin

    Ocean Engineering, Vol. 187 (2019), Iss. P.106087

    https://doi.org/10.1016/j.oceaneng.2019.05.069 [Citations: 11]
  56. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer

    Li, Q. | Luo, K.H. | Kang, Q.J. | He, Y.L. | Chen, Q. | Liu, Q.

    Progress in Energy and Combustion Science, Vol. 52 (2016), Iss. P.62

    https://doi.org/10.1016/j.pecs.2015.10.001 [Citations: 750]
  57. Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study

    Zarghami, Ahad | Biscarini, Chiara | Succi, Sauro | Ubertini, Stefano

    Journal of Scientific Computing, Vol. 59 (2014), Iss. 1 P.80

    https://doi.org/10.1007/s10915-013-9754-4 [Citations: 28]
  58. Dynamic symmetry-breaking in mutually annihilating fluids with selective interfaces

    Succi, Sauro | Montessori, Andrea | Falcucci, Giacomo

    Journal of Statistical Mechanics: Theory and Experiment, Vol. 2019 (2019), Iss. 8 P.083215

    https://doi.org/10.1088/1742-5468/ab3459 [Citations: 0]
  59. Lattice Boltzmann Analysis of Fluid-Structure Interaction with Moving Boundaries

    Rosis, Alessandro De | Falcucci, Giacomo | Ubertini, Stefano | Ubertini, Francesco | Succi, Sauro

    Communications in Computational Physics, Vol. 13 (2013), Iss. 3 P.823

    https://doi.org/10.4208/cicp.141111.201211s [Citations: 39]
  60. Investigation on laser-induced bubble collapse among triple particles based on high-frame-rate photography and the Kelvin impulse model

    Zhang, Yuning | Ding, Zhiling | Hu, Shuzheng | Hu, Jingrong | Wang, Xiaoyu | Zheng, Xianghao | Zhang, Yuning

    Physics of Fluids, Vol. 36 (2024), Iss. 5

    https://doi.org/10.1063/5.0202129 [Citations: 1]
  61. Mesoscopic model for binary fluids

    Echeverria, C. | Tucci, K. | Alvarez-Llamoza, O. | Orozco-Guillén, E. E. | Morales, M. | Cosenza, M. G.

    Frontiers of Physics, Vol. 12 (2017), Iss. 5

    https://doi.org/10.1007/s11467-017-0688-4 [Citations: 6]
  62. Central-Moments-Based Lattice Boltzmann for Associating Fluids: A New Integrated Approach

    Asadi, Mohammad Bagher | De Rosis, Alessandro | Zendehboudi, Sohrab

    The Journal of Physical Chemistry B, Vol. 124 (2020), Iss. 14 P.2900

    https://doi.org/10.1021/acs.jpcb.9b10989 [Citations: 9]