Approximate Riemann Solvers and Robust High-Order Finite Volume Schemes for Multi-Dimensional Ideal MHD Equations

Approximate Riemann Solvers and Robust High-Order Finite Volume Schemes for Multi-Dimensional Ideal MHD Equations

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 2 : pp. 324–362

Abstract

We design stable and high-order accurate finite volume schemes for the ideal MHD equations in multi-dimensions. We obtain excellent numerical stability due to some new elements in the algorithm. The schemes are based on three- and five-wave approximate Riemann solvers of the HLL-type, with the novelty that we allow a varying normal magnetic field. This is achieved by considering the semi-conservative Godunov-Powell form of the MHD equations. We show that it is important to discretize the Godunov-Powell source term in the right way, and that the HLL-type solvers naturally provide a stable upwind discretization. Second-order versions of the ENO- and WENO-type reconstructions are proposed, together with precise modifications necessary to preserve positive pressure and density. Extending the discrete source term to second order while maintaining stability requires non-standard techniques, which we present. The first- and second-order schemes are tested on a suite of numerical experiments demonstrating impressive numerical resolution as well as stability, even on very fine meshes.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.171109.070510a

Communications in Computational Physics, Vol. 9 (2011), Iss. 2 : pp. 324–362

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    39

Keywords:   

  1. Constraint Preserving Schemes Using Potential-Based Fluxes. II. Genuinely Multidimensional Systems of Conservation Laws

    Mishra, Siddhartha | Tadmor, Eitan

    SIAM Journal on Numerical Analysis, Vol. 49 (2011), Iss. 3 P.1023

    https://doi.org/10.1137/090770138 [Citations: 10]
  2. Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

    A Finite Volume MHD Code in Spherical Coordinates for Background Solar Wind

    Feng, Xueshang

    2020

    https://doi.org/10.1007/978-981-13-9081-4_3 [Citations: 4]
  3. A 5-Wave Relaxation Solver for the Shallow Water MHD System

    Bouchut, François | Lhébrard, Xavier

    Journal of Scientific Computing, Vol. 68 (2016), Iss. 1 P.92

    https://doi.org/10.1007/s10915-015-0130-4 [Citations: 7]
  4. Parallel Processing and Applied Mathematics

    Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers

    Šukys, Jonas | Mishra, Siddhartha | Schwab, Christoph

    2012

    https://doi.org/10.1007/978-3-642-31464-3_25 [Citations: 7]
  5. Globally divergence-free DG scheme for ideal compressible MHD

    Balsara, Dinshaw S. | Kumar, Rakesh | Chandrashekar, Praveen

    Communications in Applied Mathematics and Computational Science, Vol. 16 (2021), Iss. 1 P.59

    https://doi.org/10.2140/camcos.2021.16.59 [Citations: 8]
  6. SIMULATING WAVES IN THE UPPER SOLAR ATMOSPHERE WITH SURYA: A WELL-BALANCED HIGH-ORDER FINITE-VOLUME CODE

    Fuchs, F. G. | McMurry, A. D. | Mishra, S. | Waagan, K.

    The Astrophysical Journal, Vol. 732 (2011), Iss. 2 P.75

    https://doi.org/10.1088/0004-637X/732/2/75 [Citations: 12]
  7. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    Uncertainty Quantification for Hyperbolic Systems of Conservation Laws

    Abgrall, R. | Mishra, S.

    2017

    https://doi.org/10.1016/bs.hna.2016.11.003 [Citations: 18]
  8. A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests

    Waagan, K. | Federrath, C. | Klingenberg, C.

    Journal of Computational Physics, Vol. 230 (2011), Iss. 9 P.3331

    https://doi.org/10.1016/j.jcp.2011.01.026 [Citations: 140]
  9. Second Order Divergence Constraint Preserving Entropy Stable Finite Difference Schemes for Ideal Two-Fluid Plasma Flow Equations

    Agnihotri, Jaya | Bhoriya, Deepak | Kumar, Harish | Chandrashekhar, Praveen | Balsara, Dinshaw S.

    Journal of Scientific Computing, Vol. 101 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02685-0 [Citations: 0]
  10. Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws

    Fjordholm, Ulrik S. | Käppeli, Roger | Mishra, Siddhartha | Tadmor, Eitan

    Foundations of Computational Mathematics, Vol. 17 (2017), Iss. 3 P.763

    https://doi.org/10.1007/s10208-015-9299-z [Citations: 63]
  11. Magnetohydrodynamic Modeling of the Solar Corona with an Effective Implicit Strategy

    Feng, Xueshang | Wang, Haopeng | Xiang, Changqing | Liu, Xiaojing | Zhang, Man | Zhao, Jingmin | Shen, Fang

    The Astrophysical Journal Supplement Series, Vol. 257 (2021), Iss. 2 P.34

    https://doi.org/10.3847/1538-4365/ac1f8b [Citations: 9]
  12. An Entropy-stable Ideal EC-GLM-MHD Model for the Simulation of the Three-dimensional Ambient Solar Wind

    Li, Caixia | Feng, Xueshang | Wei, Fengsi

    The Astrophysical Journal Supplement Series, Vol. 257 (2021), Iss. 2 P.24

    https://doi.org/10.3847/1538-4365/ac16d5 [Citations: 3]
  13. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions

    Mishra, S. | Schwab, Ch. | Šukys, J.

    Journal of Computational Physics, Vol. 231 (2012), Iss. 8 P.3365

    https://doi.org/10.1016/j.jcp.2012.01.011 [Citations: 80]
  14. Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD

    Chertock, Alina | Kurganov, Alexander | Redle, Michael | Zeitlin, Vladimir

    Journal of Computational Physics, Vol. 518 (2024), Iss. P.113300

    https://doi.org/10.1016/j.jcp.2024.113300 [Citations: 0]
  15. Implicit Solar Coronal Magnetohydrodynamic (MHD) Modeling with a Low-dissipation Hybridized AUSM-HLL Riemann Solver

    Wang, Haopeng | Xiang, Changqing | Liu, Xiaojing | Lv, Jiakun | Shen, Fang

    The Astrophysical Journal, Vol. 935 (2022), Iss. 1 P.46

    https://doi.org/10.3847/1538-4357/ac78e0 [Citations: 0]
  16. Modelling and entropy satisfying relaxation scheme for the nonconservative bitemperature Euler system with transverse magnetic field

    Brull, Stéphane | Dubroca, Bruno | Lhébrard, Xavier

    Computers & Fluids, Vol. 214 (2021), Iss. P.104743

    https://doi.org/10.1016/j.compfluid.2020.104743 [Citations: 2]
  17. Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes

    Wu, Kailiang | Shu, Chi-Wang

    Numerische Mathematik, Vol. 142 (2019), Iss. 4 P.995

    https://doi.org/10.1007/s00211-019-01042-w [Citations: 52]
  18. On the computation of measure-valued solutions

    Fjordholm, Ulrik S. | Mishra, Siddhartha | Tadmor, Eitan

    Acta Numerica, Vol. 25 (2016), Iss. P.567

    https://doi.org/10.1017/S0962492916000088 [Citations: 62]
  19. Uncertainty Quantification for Hyperbolic and Kinetic Equations

    Monte-Carlo Finite-Volume Methods in Uncertainty Quantification for Hyperbolic Conservation Laws

    Mishra, Siddhartha | Schwab, Christoph

    2017

    https://doi.org/10.1007/978-3-319-67110-9_7 [Citations: 2]
  20. Stabilized Galerkin for transient advection of differential forms

    Heumann, Holger | Hiptmair, Ralf | Pagliantini, Cecilia

    Discrete & Continuous Dynamical Systems - S, Vol. 9 (2016), Iss. 1 P.185

    https://doi.org/10.3934/dcdss.2016.9.185 [Citations: 3]
  21. Uncertainty Quantification in Computational Fluid Dynamics

    Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws

    Mishra, Siddhartha | Schwab, Christoph | Šukys, Jonas

    2013

    https://doi.org/10.1007/978-3-319-00885-1_6 [Citations: 13]
  22. A New Locally Divergence-Free Path-Conservative Central-Upwind Scheme for Ideal and Shallow Water Magnetohydrodynamics

    Chertock, Alina | Kurganov, Alexander | Redle, Michael | Wu, Kailiang

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 3 P.A1998

    https://doi.org/10.1137/22M1539009 [Citations: 1]
  23. Mathematics and Numerics for Balance Partial Differential-Algebraic Equations (PDAEs)

    Lambert, Wanderson | Alvarez, Amaury | Ledoino, Ismael | Tadeu, Duilio | Marchesin, Dan | Bruining, Johannes

    Journal of Scientific Computing, Vol. 84 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01279-w [Citations: 14]
  24. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    Numerical Methods for Conservation Laws With Discontinuous Coefficients

    Mishra, S.

    2017

    https://doi.org/10.1016/bs.hna.2016.11.002 [Citations: 1]
  25. An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD

    Boscheri, Walter | Loubère, Raphaël | Maire, Pierre-Henri

    Communications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 3 P.1665

    https://doi.org/10.1007/s42967-023-00309-2 [Citations: 0]
  26. High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous Galerkin scheme

    Guillet, Thomas | Pakmor, Rüdiger | Springel, Volker | Chandrashekar, Praveen | Klingenberg, Christian

    Monthly Notices of the Royal Astronomical Society, Vol. 485 (2019), Iss. 3 P.4209

    https://doi.org/10.1093/mnras/stz314 [Citations: 22]
  27. Modeling the Solar Corona with an Implicit High-order Reconstructed Discontinuous Galerkin Scheme

    Liu, XiaoJing | Feng, Xueshang | Zhang, Man | Zhao, Jingmin

    The Astrophysical Journal Supplement Series, Vol. 265 (2023), Iss. 1 P.19

    https://doi.org/10.3847/1538-4365/acb14f [Citations: 0]
  28. A multi well-balanced scheme for the shallow water MHD system with topography

    Bouchut, François | Lhébrard, Xavier

    Numerische Mathematik, Vol. 136 (2017), Iss. 4 P.875

    https://doi.org/10.1007/s00211-017-0865-y [Citations: 7]
  29. Geostrophic vs magneto-geostrophic adjustment and nonlinear magneto-inertia-gravity waves in rotating shallow water magnetohydrodynamics

    Zeitlin, Vladimir | Lusso, Christelle | Bouchut, François

    Geophysical & Astrophysical Fluid Dynamics, Vol. 109 (2015), Iss. 5 P.497

    https://doi.org/10.1080/03091929.2015.1072178 [Citations: 6]