Numerical Simulation of Time-Harmonic Waves in Inhomogeneous Media Using Compact High Order Schemes

Numerical Simulation of Time-Harmonic Waves in Inhomogeneous Media Using Compact High Order Schemes

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 520–541

Abstract

In many problems, one wishes to solve the Helmholtz equation with variable coefficients within the Laplacian-like term and use a high order accurate method (e.g., fourth order accurate) to alleviate the points-per-wavelength constraint by reducing the dispersion errors. The variation of coefficients in the equation may be due to an inhomogeneous medium and/or non-Cartesian coordinates. This renders existing fourth order finite difference methods inapplicable. We develop a new compact scheme that is provably fourth order accurate even for these problems. We present numerical results that corroborate the fourth order convergence rate for several model problems.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.091209.080410s

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 520–541

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:   

  1. Is Pollution Effect of Finite Difference Schemes Avoidable for Multi-Dimensional Helmholtz Equations with High Wave Numbers?

    Wang, Kun | Wong, Yau Shu

    Communications in Computational Physics, Vol. 21 (2017), Iss. 2 P.490

    https://doi.org/10.4208/cicp.OA-2016-0057 [Citations: 13]
  2. Виктор Соломонович Рябенький и его школа (к девяностолетию со дня рождения)

    Godunov, Sergei Konstantinovich | Zhukov, Victor Timofeevich | Lazarev, M I | Sofronov, Ivan L'vovich | Turchaninov, Viktor Igorevich | Kholodov, Aleksandr Sergeevich | Tsynkov, Semen Viktorovich | Chetverushkin, Boris Nikolaevich | Epshteyn, Yekaterina Yu

    Успехи математических наук, Vol. 70 (2015), Iss. 6(426) P.213

    https://doi.org/10.4213/rm9676 [Citations: 0]
  3. Arbitrary high-order C0 tensor product Galerkin finite element methods for the electromagnetic scattering from a large cavity

    Du, Kui | Sun, Weiwei | Zhang, Xiaoping

    Journal of Computational Physics, Vol. 242 (2013), Iss. P.181

    https://doi.org/10.1016/j.jcp.2013.02.015 [Citations: 12]
  4. An inverse Lax-Wendroff procedure for hyperbolic conservation laws with changing wind direction on the boundary

    Lu, Jianfang | Shu, Chi-Wang | Tan, Sirui | Zhang, Mengping

    Journal of Computational Physics, Vol. 426 (2021), Iss. P.109940

    https://doi.org/10.1016/j.jcp.2020.109940 [Citations: 18]
  5. Компактные разностные схемы для аппроксимации дифференциальных соотношений

    Гордин, Владимир Александрович | Gordin, Vladimir Aleksandrovich

    Математическое моделирование, Vol. 31 (2019), Iss. 7 P.58

    https://doi.org/10.1134/S0234087919070049 [Citations: 0]
  6. Preconditioned Krylov Subspace Methods for Sixth Order Compact Approximations of the Helmholtz Equation

    Gryazin, Yury

    ISRN Computational Mathematics, Vol. 2014 (2014), Iss. P.1

    https://doi.org/10.1155/2014/745849 [Citations: 2]
  7. A generalized optimal fourth-order finite difference scheme for a 2D Helmholtz equation with the perfectly matched layer boundary condition

    Dastour, Hatef | Liao, Wenyuan

    Journal of Computational and Applied Mathematics, Vol. 394 (2021), Iss. P.113544

    https://doi.org/10.1016/j.cam.2021.113544 [Citations: 6]
  8. Compact difference scheme for parabolic and Schrödinger-type equations with variable coefficients

    Gordin, Vladimir A. | Tsymbalov, Evgenii A.

    Journal of Computational Physics, Vol. 375 (2018), Iss. P.1451

    https://doi.org/10.1016/j.jcp.2018.06.079 [Citations: 10]
  9. A High Order Compact Time/Space Finite Difference Scheme for the Wave Equation with Variable Speed of Sound

    Britt, Steven | Turkel, Eli | Tsynkov, Semyon

    Journal of Scientific Computing, Vol. 76 (2018), Iss. 2 P.777

    https://doi.org/10.1007/s10915-017-0639-9 [Citations: 33]
  10. Dirac assisted tree method for 1D heterogeneous Helmholtz equations with arbitrary variable wave numbers

    Han, Bin | Michelle, Michelle | Wong, Yau Shu

    Computers & Mathematics with Applications, Vol. 97 (2021), Iss. P.416

    https://doi.org/10.1016/j.camwa.2021.06.015 [Citations: 6]
  11. Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number

    Turkel, Eli | Gordon, Dan | Gordon, Rachel | Tsynkov, Semyon

    Journal of Computational Physics, Vol. 232 (2013), Iss. 1 P.272

    https://doi.org/10.1016/j.jcp.2012.08.016 [Citations: 116]
  12. Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials

    Britt, S. | Tsynkov, S. | Turkel, E.

    Journal of Computational Physics, Vol. 354 (2018), Iss. P.26

    https://doi.org/10.1016/j.jcp.2017.10.049 [Citations: 28]
  13. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    Wu, Zedong | Alkhalifah, Tariq

    Journal of Computational Physics, Vol. 365 (2018), Iss. P.350

    https://doi.org/10.1016/j.jcp.2018.03.046 [Citations: 30]
  14. Computation of singular solutions to the Helmholtz equation with high order accuracy

    Britt, S. | Petropavlovsky, S. | Tsynkov, S. | Turkel, E.

    Applied Numerical Mathematics, Vol. 93 (2015), Iss. P.215

    https://doi.org/10.1016/j.apnum.2014.10.006 [Citations: 12]
  15. High-order numerical solution of the Helmholtz equation for domains with reentrant corners

    Magura, S. | Petropavlovsky, S. | Tsynkov, S. | Turkel, E.

    Applied Numerical Mathematics, Vol. 118 (2017), Iss. P.87

    https://doi.org/10.1016/j.apnum.2017.02.013 [Citations: 14]
  16. Non-iterative domain decomposition for the Helmholtz equation with strong material discontinuities

    North, Evan | Tsynkov, Semyon | Turkel, Eli

    Applied Numerical Mathematics, Vol. 173 (2022), Iss. P.51

    https://doi.org/10.1016/j.apnum.2021.10.024 [Citations: 4]
  17. Two-parameter modified matrix splitting iteration method for Helmholtz equation

    Li, Tian-Yi | Chen, Fang | Fang, Zhi-Wei | Sun, Hai-Wei | Wang, Zhi

    International Journal of Computer Mathematics, Vol. 101 (2024), Iss. 9-10 P.1205

    https://doi.org/10.1080/00207160.2023.2301570 [Citations: 0]
  18. Compact Finite Difference Schemes for Approximating Differential Relations

    Gordin, V. A.

    Mathematical Models and Computer Simulations, Vol. 12 (2020), Iss. 2 P.133

    https://doi.org/10.1134/S2070048220020064 [Citations: 0]
  19. 2D and 3D frequency-domain elastic wave modeling in complex media with a parallel iterative solver

    Li, Yang | Métivier, Ludovic | Brossier, Romain | Han, Bo | Virieux, Jean

    GEOPHYSICS, Vol. 80 (2015), Iss. 3 P.T101

    https://doi.org/10.1190/geo2014-0480.1 [Citations: 56]
  20. Compact optimal quadratic spline collocation methods for the Helmholtz equation

    Fairweather, Graeme | Karageorghis, Andreas | Maack, Jon

    Journal of Computational Physics, Vol. 230 (2011), Iss. 8 P.2880

    https://doi.org/10.1016/j.jcp.2010.12.041 [Citations: 22]
  21. The Method of Difference Potentials for the Helmholtz Equation Using Compact High Order Schemes

    Medvinsky, M. | Tsynkov, S. | Turkel, E.

    Journal of Scientific Computing, Vol. 53 (2012), Iss. 1 P.150

    https://doi.org/10.1007/s10915-012-9602-y [Citations: 45]
  22. A High-Order Numerical Method for the Helmholtz Equation with Nonstandard Boundary Conditions

    Britt, D. S. | Tsynkov, S. V. | Turkel, E.

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 5 P.A2255

    https://doi.org/10.1137/120902689 [Citations: 25]
  23. High order numerical simulation of the transmission and scattering of waves using the method of difference potentials

    Medvinsky, M. | Tsynkov, S. | Turkel, E.

    Journal of Computational Physics, Vol. 243 (2013), Iss. P.305

    https://doi.org/10.1016/j.jcp.2013.03.014 [Citations: 22]
  24. High-order accurate numerical simulation of monochromatic waves in photonic crystal ring resonators with the help of a non-iterative domain decomposition

    North, Evan | Tsynkov, Semyon | Turkel, Eli

    Journal of Computational Electronics, Vol. (2022), Iss.

    https://doi.org/10.1007/s10825-022-01973-y [Citations: 0]
  25. Pollution and accuracy of solutions of the Helmholtz equation: A novel perspective from the eigenvalues

    Dwarka, V. | Vuik, C.

    Journal of Computational and Applied Mathematics, Vol. 395 (2021), Iss. P.113549

    https://doi.org/10.1016/j.cam.2021.113549 [Citations: 3]
  26. Solving the Helmholtz equation for general smooth geometry using simple grids

    Medvinsky, M. | Tsynkov, S. | Turkel, E.

    Wave Motion, Vol. 62 (2016), Iss. P.75

    https://doi.org/10.1016/j.wavemoti.2015.12.004 [Citations: 16]
  27. A new finite difference scheme for the 3D Helmholtz equation with a preconditioned iterative solver

    Wu, Tingting | Sun, Yuran | Cheng, Dongsheng

    Applied Numerical Mathematics, Vol. 161 (2021), Iss. P.348

    https://doi.org/10.1016/j.apnum.2020.11.023 [Citations: 6]
  28. Electromagnetic scattering from a cavity embedded in an impedance ground plane

    Du, Kui | Li, Buyang | Sun, Weiwei | Yang, Huanhuan

    Mathematical Methods in the Applied Sciences, Vol. 41 (2018), Iss. 17 P.7748

    https://doi.org/10.1002/mma.5239 [Citations: 1]
  29. An optimal 13-point finite difference scheme for a 2D Helmholtz equation with a perfectly matched layer boundary condition

    Dastour, Hatef | Liao, Wenyuan

    Numerical Algorithms, Vol. 86 (2021), Iss. 3 P.1109

    https://doi.org/10.1007/s11075-020-00926-5 [Citations: 3]
  30. A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation

    Wu, Tingting

    Journal of Computational and Applied Mathematics, Vol. 311 (2017), Iss. P.497

    https://doi.org/10.1016/j.cam.2016.08.018 [Citations: 29]
  31. An optimal compact sixth-order finite difference scheme for the Helmholtz equation

    Wu, Tingting | Xu, Ruimin

    Computers & Mathematics with Applications, Vol. 75 (2018), Iss. 7 P.2520

    https://doi.org/10.1016/j.camwa.2017.12.023 [Citations: 38]
  32. Suppression of spurious frequencies in scattering problems by means of boundary algebraic and combined field equations

    Poblet-Puig, J. | Valyaev, V.Yu. | Shanin, A.V.

    Journal of Integral Equations and Applications, Vol. 27 (2015), Iss. 2

    https://doi.org/10.1216/JIE-2015-27-2-233 [Citations: 4]
  33. Compact High Order Accurate Schemes for the Three Dimensional Wave Equation

    Smith, F. | Tsynkov, S. | Turkel, E.

    Journal of Scientific Computing, Vol. 81 (2019), Iss. 3 P.1181

    https://doi.org/10.1007/s10915-019-00970-x [Citations: 23]
  34. A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media

    Gillman, Adrianna | Barnett, Alex H. | Martinsson, Per-Gunnar

    BIT Numerical Mathematics, Vol. 55 (2015), Iss. 1 P.141

    https://doi.org/10.1007/s10543-014-0499-8 [Citations: 68]
  35. High order methods for acoustic scattering: Coupling farfield expansions ABC with deferred-correction methods

    Villamizar, Vianey | Grundvig, Dane | Rojas, Otilio | Acosta, Sebastian

    Wave Motion, Vol. 95 (2020), Iss. P.102529

    https://doi.org/10.1016/j.wavemoti.2020.102529 [Citations: 3]
  36. A high order compact time/space finite difference scheme for the 2D and 3D wave equation with a damping layer

    Kahana, Adar | Smith, Fouche | Turkel, Eli | Tsynkov, Semyon

    Journal of Computational Physics, Vol. 460 (2022), Iss. P.111161

    https://doi.org/10.1016/j.jcp.2022.111161 [Citations: 4]
  37. On the Derivation of Highest-Order Compact Finite Difference Schemes for the One- and Two-Dimensional Poisson Equation with Dirichlet Boundary Conditions

    Settle, Sean O. | Douglas, Craig C. | Kim, Imbunm | Sheen, Dongwoo

    SIAM Journal on Numerical Analysis, Vol. 51 (2013), Iss. 4 P.2470

    https://doi.org/10.1137/120875570 [Citations: 11]
  38. Amplitude-based Generalized Plane Waves: New Quasi-Trefftz Functions for Scalar Equations in two dimensions

    Imbert-Gerard, Lise-Marie

    SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 3 P.1663

    https://doi.org/10.1137/20M136791X [Citations: 3]
  39. High-Order Compact Finite Difference Methods for Solving the High-Dimensional Helmholtz Equations

    Wang, Zhi | Ge, Yongbin | Sun, Hai-Wei

    Computational Methods in Applied Mathematics, Vol. 23 (2023), Iss. 2 P.491

    https://doi.org/10.1515/cmam-2022-0002 [Citations: 0]
  40. Fourth-Order Accurate Compact Scheme for First-Order Maxwell’s Equations

    Versano, I. | Turkel, E. | Tsynkov, S.

    Journal of Scientific Computing, Vol. 100 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02583-5 [Citations: 0]