Year: 2011
Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 542–567
Abstract
The stochastic collocation method using sparse grids has become a popular choice for performing stochastic computations in high dimensional (random) parameter space. In addition to providing highly accurate stochastic solutions, the sparse grid collocation results naturally contain sensitivity information with respect to the input random parameters. In this paper, we use the sparse grid interpolation and cubature methods of Smolyak together with combinatorial analysis to give a computationally efficient method for computing the global sensitivity values of Sobol'. This method allows for approximation of all main effect and total effect values from evaluation of f on a single set of sparse grids. We discuss convergence of this method, apply it to several test cases and compare to existing methods. As a result which may be of independent interest, we recover an explicit formula for evaluating a Lagrange basis interpolating polynomial associated with the Chebyshev extrema. This allows one to manipulate the sparse grid collocation results in a highly efficient manner.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.230909.160310s
Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 542–567
Published online: 2011-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 26
-
Sensitivity analysis of ventricular activation and electrocardiogram in tailored models of heart-failure patients
Sánchez, C. | D’Ambrosio, G. | Maffessanti, F. | Caiani, E. G. | Prinzen, F. W. | Krause, R. | Auricchio, A. | Potse, M.Medical & Biological Engineering & Computing, Vol. 56 (2018), Iss. 3 P.491
https://doi.org/10.1007/s11517-017-1696-9 [Citations: 21] -
Impact of parametric uncertainty on estimation of the energy deposition into an irradiated brain tumor
Taverniers, Søren | Tartakovsky, Daniel M.Journal of Computational Physics, Vol. 348 (2017), Iss. P.139
https://doi.org/10.1016/j.jcp.2017.07.008 [Citations: 3] -
Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs
Mara, Thierry A. | Becker, William E.Reliability Engineering & System Safety, Vol. 214 (2021), Iss. P.107795
https://doi.org/10.1016/j.ress.2021.107795 [Citations: 34] -
Sensitivity analysis and model order reduction for random linear dynamical systems
Pulch, Roland | ter Maten, E. Jan W. | Augustin, FlorianMathematics and Computers in Simulation, Vol. 111 (2015), Iss. P.80
https://doi.org/10.1016/j.matcom.2015.01.003 [Citations: 22] -
Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices
Cook, Douglas | Julias, Margaret | Nauman, EricJournal of Biomechanics, Vol. 47 (2014), Iss. 6 P.1241
https://doi.org/10.1016/j.jbiomech.2014.01.040 [Citations: 30] -
Deterministic and Stochastic Modeling in Computational Electromagnetics
Methods for Stochastic Analysis
2023
https://doi.org/10.1002/9781119989271.ch9 [Citations: 0] -
Rank adaptive tensor recovery based model reduction for partial differential equations with high-dimensional random inputs
Tang, Kejun | Liao, QifengJournal of Computational Physics, Vol. 409 (2020), Iss. P.109326
https://doi.org/10.1016/j.jcp.2020.109326 [Citations: 3] -
Bayesian sparse polynomial chaos expansion for global sensitivity analysis
Shao, Qian | Younes, Anis | Fahs, Marwan | Mara, Thierry A.Computer Methods in Applied Mechanics and Engineering, Vol. 318 (2017), Iss. P.474
https://doi.org/10.1016/j.cma.2017.01.033 [Citations: 93] -
Handbook of Uncertainty Quantification
Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes
Le Gratiet, Loïc | Marelli, Stefano | Sudret, Bruno2017
https://doi.org/10.1007/978-3-319-12385-1_38 [Citations: 45] -
Encyclopedia of Systems Biology
Model-based Experiment Design, Initiation
Buzzard, Gregery T.
2013
https://doi.org/10.1007/978-1-4419-9863-7_1232 [Citations: 0] -
Global Sensitivity Analysis of Uncertain Input Variables in Structural Models
Zhou, Changcong | Liu, Fuchao | Tang, Chenghu | Wang, WenxuanJournal of Engineering Mechanics, Vol. 143 (2017), Iss. 12
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001373 [Citations: 2] -
A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials
Wu, Jinglai | Luo, Zhen | Zhang, Nong | Zhang, YunqingEngineering Optimization, Vol. 47 (2015), Iss. 9 P.1264
https://doi.org/10.1080/0305215X.2014.963071 [Citations: 17] -
Handbook of Uncertainty Quantification
Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes
Gratiet, Loïc Le | Marelli, Stefano | Sudret, Bruno2015
https://doi.org/10.1007/978-3-319-11259-6_38-1 [Citations: 15] -
A new point estimation method for statistical moments based on dimension-reduction method and direct numerical integration
Fan, Wenliang | Liu, Runyu | Ang, Alfredo H-S | Li, ZhengliangApplied Mathematical Modelling, Vol. 62 (2018), Iss. P.664
https://doi.org/10.1016/j.apm.2018.06.022 [Citations: 18] -
Variance-based interaction index measuring heteroscedasticity
Ito, Keiichi | Couckuyt, Ivo | Poles, Silvia | Dhaene, TomComputer Physics Communications, Vol. 203 (2016), Iss. P.152
https://doi.org/10.1016/j.cpc.2016.02.032 [Citations: 1] -
Applications of sparse grid interpolation: sensitivity analysis and experiment design
Buzzard, Gregery T. | Changkuon, Daniela | Donahue, Maia M. | Rundell, Ann E.Procedia - Social and Behavioral Sciences, Vol. 2 (2010), Iss. 6 P.7623
https://doi.org/10.1016/j.sbspro.2010.05.148 [Citations: 0] -
Non-intrusive reduced order modelling of the Navier–Stokes equations
Xiao, D. | Fang, F. | Buchan, A.G. | Pain, C.C. | Navon, I.M. | Muggeridge, A.Computer Methods in Applied Mechanics and Engineering, Vol. 293 (2015), Iss. P.522
https://doi.org/10.1016/j.cma.2015.05.015 [Citations: 119] -
Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion
Fajraoui, N. | Mara, T. A. | Younes, A. | Bouhlila, R.Water, Air, & Soil Pollution, Vol. 223 (2012), Iss. 7 P.4183
https://doi.org/10.1007/s11270-012-1183-8 [Citations: 27] -
A Global Parallel Model Based Design of Experiments Method to Minimize Model Output Uncertainty
Bazil, Jason N. | Buzzard, Gregory T. | Rundell, Ann E.Bulletin of Mathematical Biology, Vol. 74 (2012), Iss. 3 P.688
https://doi.org/10.1007/s11538-011-9686-9 [Citations: 23] -
On the consistency of Sobol indices with respect to stochastic ordering of model parameters
Cousin, A. | Janon, A. | Maume-Deschamps, V. | Niang, I.ESAIM: Probability and Statistics, Vol. 23 (2019), Iss. P.387
https://doi.org/10.1051/ps/2018001 [Citations: 3] -
Sensitivity Analysis in Earth Observation Modelling
Global Sensitivity Analysis for Uncertain Parameters, Models, and Scenarios
Ye, M. | Hill, M.C.2017
https://doi.org/10.1016/B978-0-12-803011-0.00010-0 [Citations: 15] -
Demonstration of the relationship between sensitivity and identifiability for inverse uncertainty quantification
Wu, Xu | Shirvan, Koroush | Kozlowski, TomaszJournal of Computational Physics, Vol. 396 (2019), Iss. P.12
https://doi.org/10.1016/j.jcp.2019.06.032 [Citations: 27] -
Global sensitivity analysis using sparse grid interpolation and polynomial chaos
Buzzard, Gregery T.
Reliability Engineering & System Safety, Vol. 107 (2012), Iss. P.82
https://doi.org/10.1016/j.ress.2011.07.011 [Citations: 71] -
Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach
Iwanaga, Takuya | Wang, Hsiao-Hsuan | Hamilton, Serena H. | Grimm, Volker | Koralewski, Tomasz E. | Salado, Alejandro | Elsawah, Sondoss | Razavi, Saman | Yang, Jing | Glynn, Pierre | Badham, Jennifer | Voinov, Alexey | Chen, Min | Grant, William E. | Peterson, Tarla Rai | Frank, Karin | Shenk, Gary | Barton, C. Michael | Jakeman, Anthony J. | Little, John C.Environmental Modelling & Software, Vol. 135 (2021), Iss. P.104885
https://doi.org/10.1016/j.envsoft.2020.104885 [Citations: 47] -
Simulation‐based uncertainty quantification of human arterial network hemodynamics
Chen, Peng | Quarteroni, Alfio | Rozza, GianluigiInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 29 (2013), Iss. 6 P.698
https://doi.org/10.1002/cnm.2554 [Citations: 62] -
Global sensitivity analysis for medium-dimensional structural engineering problems using stochastic collocation
Hübler, Clemens
Reliability Engineering & System Safety, Vol. 195 (2020), Iss. P.106749
https://doi.org/10.1016/j.ress.2019.106749 [Citations: 9] -
Simulation of magnetic flux distribution for the measurement of the local thinning of ferromagnetic plates
Vértesy, G. | Bálint, B. | Bingler, A. | Gyimóthy, S. | Bilicz, S. | Pávó, J.International Journal of Applied Electromagnetics and Mechanics, Vol. 55 (2017), Iss. 4 P.597
https://doi.org/10.3233/JAE-170089 [Citations: 3] -
Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription
Perley, Jeffrey | Mikolajczak, Judith | Buzzard, Gregery | Harrison, Marietta | Rundell, AnnProcesses, Vol. 2 (2014), Iss. 4 P.867
https://doi.org/10.3390/pr2040867 [Citations: 9] -
Stochastic dosimetry of a three compartment head model
Šušnjara, Anna | Dodig, Hrvoje | Cvetković, Mario | Poljak, DraganEngineering Analysis with Boundary Elements, Vol. 117 (2020), Iss. P.332
https://doi.org/10.1016/j.enganabound.2020.04.010 [Citations: 13] -
Solving the Schroedinger equation using Smolyak interpolants
Avila, Gustavo | Carrington, TuckerThe Journal of Chemical Physics, Vol. 139 (2013), Iss. 13
https://doi.org/10.1063/1.4821348 [Citations: 44] -
Sparse grids‐based stochastic approximations with applications to aerodynamics sensitivity analysis
Resmini, A. | Peter, J. | Lucor, D.International Journal for Numerical Methods in Engineering, Vol. 106 (2016), Iss. 1 P.32
https://doi.org/10.1002/nme.5005 [Citations: 16] -
Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model
Huberts, W. | Donders, W. P. | Delhaas, T. | van de Vosse, F. N.International Journal for Numerical Methods in Biomedical Engineering, Vol. 30 (2014), Iss. 12 P.1679
https://doi.org/10.1002/cnm.2695 [Citations: 29] -
Personalization of models with many model parameters: an efficient sensitivity analysis approach
Donders, W. P. | Huberts, W. | van de Vosse, F. N. | Delhaas, T.International Journal for Numerical Methods in Biomedical Engineering, Vol. 31 (2015), Iss. 10
https://doi.org/10.1002/cnm.2727 [Citations: 28] -
Efficient Basis Change for Sparse-Grid Interpolating Polynomials with Application to T-Cell Sensitivity Analysis
Buzzard, Gregery T.
Computational Biology Journal, Vol. 2013 (2013), Iss. P.1
https://doi.org/10.1155/2013/562767 [Citations: 7] -
Sequential Bayesian Polynomial Chaos Model Selection for Estimation of Sensitivity Indices
Tan, Matthias Hwai Yong
SIAM/ASA Journal on Uncertainty Quantification, Vol. 3 (2015), Iss. 1 P.146
https://doi.org/10.1137/130931175 [Citations: 6] -
A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications
Eck, Vinzenz Gregor | Donders, Wouter Paulus | Sturdy, Jacob | Feinberg, Jonathan | Delhaas, Tammo | Hellevik, Leif Rune | Huberts, WouterInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 32 (2016), Iss. 8
https://doi.org/10.1002/cnm.2755 [Citations: 115] -
Variable importance analysis: A comprehensive review
Wei, Pengfei | Lu, Zhenzhou | Song, JingwenReliability Engineering & System Safety, Vol. 142 (2015), Iss. P.399
https://doi.org/10.1016/j.ress.2015.05.018 [Citations: 373] -
Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation
Dai, Heng | Ye, MingJournal of Hydrology, Vol. 528 (2015), Iss. P.286
https://doi.org/10.1016/j.jhydrol.2015.06.034 [Citations: 47] -
A surrogate model based on sparse grid interpolation for boiling water reactor subchannel void distribution
Bennett, Alexander | Martin, Nicolas | Avramova, MariaAnnals of Nuclear Energy, Vol. 131 (2019), Iss. P.51
https://doi.org/10.1016/j.anucene.2019.03.022 [Citations: 2] -
Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool
Pisoni, E. | Albrecht, D. | Mara, T.A. | Rosati, R. | Tarantola, S. | Thunis, P.Atmospheric Environment, Vol. 183 (2018), Iss. P.84
https://doi.org/10.1016/j.atmosenv.2018.04.006 [Citations: 37] -
Global sensitivity analysis via multi-fidelity polynomial chaos expansion
Palar, Pramudita Satria | Zuhal, Lavi Rizki | Shimoyama, Koji | Tsuchiya, TakeshiReliability Engineering & System Safety, Vol. 170 (2018), Iss. P.175
https://doi.org/10.1016/j.ress.2017.10.013 [Citations: 59]