Variance-Based Global Sensitivity Analysis via Sparse-Grid Interpolation and Cubature

Variance-Based Global Sensitivity Analysis via Sparse-Grid Interpolation and Cubature

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 542–567

Abstract

The stochastic collocation method using sparse grids has become a popular choice for performing stochastic computations in high dimensional (random) parameter space. In addition to providing highly accurate stochastic solutions, the sparse grid collocation results naturally contain sensitivity information with respect to the input random parameters. In this paper, we use the sparse grid interpolation and cubature methods of Smolyak together with combinatorial analysis to give a computationally efficient method for computing the global sensitivity values of Sobol'. This method allows for approximation of all main effect and total effect values from evaluation of f on a single set of sparse grids. We discuss convergence of this method, apply it to several test cases and compare to existing methods. As a result which may be of independent interest, we recover an explicit formula for evaluating a Lagrange basis interpolating polynomial associated with the Chebyshev extrema. This allows one to manipulate the sparse grid collocation results in a highly efficient manner.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.230909.160310s

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 542–567

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:   

  1. Sensitivity analysis of ventricular activation and electrocardiogram in tailored models of heart-failure patients

    Sánchez, C. | D’Ambrosio, G. | Maffessanti, F. | Caiani, E. G. | Prinzen, F. W. | Krause, R. | Auricchio, A. | Potse, M.

    Medical & Biological Engineering & Computing, Vol. 56 (2018), Iss. 3 P.491

    https://doi.org/10.1007/s11517-017-1696-9 [Citations: 21]
  2. Impact of parametric uncertainty on estimation of the energy deposition into an irradiated brain tumor

    Taverniers, Søren | Tartakovsky, Daniel M.

    Journal of Computational Physics, Vol. 348 (2017), Iss. P.139

    https://doi.org/10.1016/j.jcp.2017.07.008 [Citations: 3]
  3. Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs

    Mara, Thierry A. | Becker, William E.

    Reliability Engineering & System Safety, Vol. 214 (2021), Iss. P.107795

    https://doi.org/10.1016/j.ress.2021.107795 [Citations: 34]
  4. Sensitivity analysis and model order reduction for random linear dynamical systems

    Pulch, Roland | ter Maten, E. Jan W. | Augustin, Florian

    Mathematics and Computers in Simulation, Vol. 111 (2015), Iss. P.80

    https://doi.org/10.1016/j.matcom.2015.01.003 [Citations: 22]
  5. Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices

    Cook, Douglas | Julias, Margaret | Nauman, Eric

    Journal of Biomechanics, Vol. 47 (2014), Iss. 6 P.1241

    https://doi.org/10.1016/j.jbiomech.2014.01.040 [Citations: 30]
  6. Deterministic and Stochastic Modeling in Computational Electromagnetics

    Methods for Stochastic Analysis

    2023

    https://doi.org/10.1002/9781119989271.ch9 [Citations: 0]
  7. Rank adaptive tensor recovery based model reduction for partial differential equations with high-dimensional random inputs

    Tang, Kejun | Liao, Qifeng

    Journal of Computational Physics, Vol. 409 (2020), Iss. P.109326

    https://doi.org/10.1016/j.jcp.2020.109326 [Citations: 3]
  8. Bayesian sparse polynomial chaos expansion for global sensitivity analysis

    Shao, Qian | Younes, Anis | Fahs, Marwan | Mara, Thierry A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 318 (2017), Iss. P.474

    https://doi.org/10.1016/j.cma.2017.01.033 [Citations: 93]
  9. Handbook of Uncertainty Quantification

    Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes

    Le Gratiet, Loïc | Marelli, Stefano | Sudret, Bruno

    2017

    https://doi.org/10.1007/978-3-319-12385-1_38 [Citations: 45]
  10. Encyclopedia of Systems Biology

    Model-based Experiment Design, Initiation

    Buzzard, Gregery T.

    2013

    https://doi.org/10.1007/978-1-4419-9863-7_1232 [Citations: 0]
  11. Global Sensitivity Analysis of Uncertain Input Variables in Structural Models

    Zhou, Changcong | Liu, Fuchao | Tang, Chenghu | Wang, Wenxuan

    Journal of Engineering Mechanics, Vol. 143 (2017), Iss. 12

    https://doi.org/10.1061/(ASCE)EM.1943-7889.0001373 [Citations: 2]
  12. A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials

    Wu, Jinglai | Luo, Zhen | Zhang, Nong | Zhang, Yunqing

    Engineering Optimization, Vol. 47 (2015), Iss. 9 P.1264

    https://doi.org/10.1080/0305215X.2014.963071 [Citations: 17]
  13. Handbook of Uncertainty Quantification

    Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes

    Gratiet, Loïc Le | Marelli, Stefano | Sudret, Bruno

    2015

    https://doi.org/10.1007/978-3-319-11259-6_38-1 [Citations: 15]
  14. A new point estimation method for statistical moments based on dimension-reduction method and direct numerical integration

    Fan, Wenliang | Liu, Runyu | Ang, Alfredo H-S | Li, Zhengliang

    Applied Mathematical Modelling, Vol. 62 (2018), Iss. P.664

    https://doi.org/10.1016/j.apm.2018.06.022 [Citations: 18]
  15. Variance-based interaction index measuring heteroscedasticity

    Ito, Keiichi | Couckuyt, Ivo | Poles, Silvia | Dhaene, Tom

    Computer Physics Communications, Vol. 203 (2016), Iss. P.152

    https://doi.org/10.1016/j.cpc.2016.02.032 [Citations: 1]
  16. Applications of sparse grid interpolation: sensitivity analysis and experiment design

    Buzzard, Gregery T. | Changkuon, Daniela | Donahue, Maia M. | Rundell, Ann E.

    Procedia - Social and Behavioral Sciences, Vol. 2 (2010), Iss. 6 P.7623

    https://doi.org/10.1016/j.sbspro.2010.05.148 [Citations: 0]
  17. Non-intrusive reduced order modelling of the Navier–Stokes equations

    Xiao, D. | Fang, F. | Buchan, A.G. | Pain, C.C. | Navon, I.M. | Muggeridge, A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 293 (2015), Iss. P.522

    https://doi.org/10.1016/j.cma.2015.05.015 [Citations: 119]
  18. Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion

    Fajraoui, N. | Mara, T. A. | Younes, A. | Bouhlila, R.

    Water, Air, & Soil Pollution, Vol. 223 (2012), Iss. 7 P.4183

    https://doi.org/10.1007/s11270-012-1183-8 [Citations: 27]
  19. A Global Parallel Model Based Design of Experiments Method to Minimize Model Output Uncertainty

    Bazil, Jason N. | Buzzard, Gregory T. | Rundell, Ann E.

    Bulletin of Mathematical Biology, Vol. 74 (2012), Iss. 3 P.688

    https://doi.org/10.1007/s11538-011-9686-9 [Citations: 23]
  20. On the consistency of Sobol indices with respect to stochastic ordering of model parameters

    Cousin, A. | Janon, A. | Maume-Deschamps, V. | Niang, I.

    ESAIM: Probability and Statistics, Vol. 23 (2019), Iss. P.387

    https://doi.org/10.1051/ps/2018001 [Citations: 3]
  21. Sensitivity Analysis in Earth Observation Modelling

    Global Sensitivity Analysis for Uncertain Parameters, Models, and Scenarios

    Ye, M. | Hill, M.C.

    2017

    https://doi.org/10.1016/B978-0-12-803011-0.00010-0 [Citations: 15]
  22. Demonstration of the relationship between sensitivity and identifiability for inverse uncertainty quantification

    Wu, Xu | Shirvan, Koroush | Kozlowski, Tomasz

    Journal of Computational Physics, Vol. 396 (2019), Iss. P.12

    https://doi.org/10.1016/j.jcp.2019.06.032 [Citations: 27]
  23. Global sensitivity analysis using sparse grid interpolation and polynomial chaos

    Buzzard, Gregery T.

    Reliability Engineering & System Safety, Vol. 107 (2012), Iss. P.82

    https://doi.org/10.1016/j.ress.2011.07.011 [Citations: 71]
  24. Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach

    Iwanaga, Takuya | Wang, Hsiao-Hsuan | Hamilton, Serena H. | Grimm, Volker | Koralewski, Tomasz E. | Salado, Alejandro | Elsawah, Sondoss | Razavi, Saman | Yang, Jing | Glynn, Pierre | Badham, Jennifer | Voinov, Alexey | Chen, Min | Grant, William E. | Peterson, Tarla Rai | Frank, Karin | Shenk, Gary | Barton, C. Michael | Jakeman, Anthony J. | Little, John C.

    Environmental Modelling & Software, Vol. 135 (2021), Iss. P.104885

    https://doi.org/10.1016/j.envsoft.2020.104885 [Citations: 47]
  25. Simulation‐based uncertainty quantification of human arterial network hemodynamics

    Chen, Peng | Quarteroni, Alfio | Rozza, Gianluigi

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 29 (2013), Iss. 6 P.698

    https://doi.org/10.1002/cnm.2554 [Citations: 62]
  26. Global sensitivity analysis for medium-dimensional structural engineering problems using stochastic collocation

    Hübler, Clemens

    Reliability Engineering & System Safety, Vol. 195 (2020), Iss. P.106749

    https://doi.org/10.1016/j.ress.2019.106749 [Citations: 9]
  27. Simulation of magnetic flux distribution for the measurement of the local thinning of ferromagnetic plates

    Vértesy, G. | Bálint, B. | Bingler, A. | Gyimóthy, S. | Bilicz, S. | Pávó, J.

    International Journal of Applied Electromagnetics and Mechanics, Vol. 55 (2017), Iss. 4 P.597

    https://doi.org/10.3233/JAE-170089 [Citations: 3]
  28. Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription

    Perley, Jeffrey | Mikolajczak, Judith | Buzzard, Gregery | Harrison, Marietta | Rundell, Ann

    Processes, Vol. 2 (2014), Iss. 4 P.867

    https://doi.org/10.3390/pr2040867 [Citations: 9]
  29. Stochastic dosimetry of a three compartment head model

    Šušnjara, Anna | Dodig, Hrvoje | Cvetković, Mario | Poljak, Dragan

    Engineering Analysis with Boundary Elements, Vol. 117 (2020), Iss. P.332

    https://doi.org/10.1016/j.enganabound.2020.04.010 [Citations: 13]
  30. Solving the Schroedinger equation using Smolyak interpolants

    Avila, Gustavo | Carrington, Tucker

    The Journal of Chemical Physics, Vol. 139 (2013), Iss. 13

    https://doi.org/10.1063/1.4821348 [Citations: 44]
  31. Sparse grids‐based stochastic approximations with applications to aerodynamics sensitivity analysis

    Resmini, A. | Peter, J. | Lucor, D.

    International Journal for Numerical Methods in Engineering, Vol. 106 (2016), Iss. 1 P.32

    https://doi.org/10.1002/nme.5005 [Citations: 16]
  32. Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model

    Huberts, W. | Donders, W. P. | Delhaas, T. | van de Vosse, F. N.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 30 (2014), Iss. 12 P.1679

    https://doi.org/10.1002/cnm.2695 [Citations: 29]
  33. Personalization of models with many model parameters: an efficient sensitivity analysis approach

    Donders, W. P. | Huberts, W. | van de Vosse, F. N. | Delhaas, T.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 31 (2015), Iss. 10

    https://doi.org/10.1002/cnm.2727 [Citations: 28]
  34. Efficient Basis Change for Sparse-Grid Interpolating Polynomials with Application to T-Cell Sensitivity Analysis

    Buzzard, Gregery T.

    Computational Biology Journal, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/562767 [Citations: 7]
  35. Sequential Bayesian Polynomial Chaos Model Selection for Estimation of Sensitivity Indices

    Tan, Matthias Hwai Yong

    SIAM/ASA Journal on Uncertainty Quantification, Vol. 3 (2015), Iss. 1 P.146

    https://doi.org/10.1137/130931175 [Citations: 6]
  36. A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications

    Eck, Vinzenz Gregor | Donders, Wouter Paulus | Sturdy, Jacob | Feinberg, Jonathan | Delhaas, Tammo | Hellevik, Leif Rune | Huberts, Wouter

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 32 (2016), Iss. 8

    https://doi.org/10.1002/cnm.2755 [Citations: 115]
  37. Variable importance analysis: A comprehensive review

    Wei, Pengfei | Lu, Zhenzhou | Song, Jingwen

    Reliability Engineering & System Safety, Vol. 142 (2015), Iss. P.399

    https://doi.org/10.1016/j.ress.2015.05.018 [Citations: 373]
  38. Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation

    Dai, Heng | Ye, Ming

    Journal of Hydrology, Vol. 528 (2015), Iss. P.286

    https://doi.org/10.1016/j.jhydrol.2015.06.034 [Citations: 47]
  39. A surrogate model based on sparse grid interpolation for boiling water reactor subchannel void distribution

    Bennett, Alexander | Martin, Nicolas | Avramova, Maria

    Annals of Nuclear Energy, Vol. 131 (2019), Iss. P.51

    https://doi.org/10.1016/j.anucene.2019.03.022 [Citations: 2]
  40. Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool

    Pisoni, E. | Albrecht, D. | Mara, T.A. | Rosati, R. | Tarantola, S. | Thunis, P.

    Atmospheric Environment, Vol. 183 (2018), Iss. P.84

    https://doi.org/10.1016/j.atmosenv.2018.04.006 [Citations: 37]
  41. Global sensitivity analysis via multi-fidelity polynomial chaos expansion

    Palar, Pramudita Satria | Zuhal, Lavi Rizki | Shimoyama, Koji | Tsuchiya, Takeshi

    Reliability Engineering & System Safety, Vol. 170 (2018), Iss. P.175

    https://doi.org/10.1016/j.ress.2017.10.013 [Citations: 59]