Adaptive Conservative Cell Average Spectral Element Methods for Transient Wigner Equation in Quantum Transport

Adaptive Conservative Cell Average Spectral Element Methods for Transient Wigner Equation in Quantum Transport

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 711–739

Abstract

A new adaptive cell average spectral element method (SEM) is proposed to solve the time-dependent Wigner equation for transport in quantum devices. The proposed cell average SEM allows adaptive non-uniform meshes in phase spaces to reduce the high-dimensional computational cost of Wigner functions while preserving exactly the mass conservation for the numerical solutions. The key feature of the proposed method is an analytical relation between the cell averages of the Wigner function in the k-space (local electron density for finite range velocity) and the point values of the distribution, resulting in fast transforms between the local electron density and local fluxes of the discretized Wigner equation via the fast sine and cosine transforms. Numerical results with the proposed method are provided to demonstrate its high accuracy, conservation, convergence and a reduction of the cost using adaptive meshes.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.080509.310310s

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 711–739

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:   

  1. Adaptive Monte Carlo algorithm for Wigner kernel evaluation

    Todorov, Venelin | Dimov, Ivan | Georgieva, Rayna | Dimitrov, Stoyan

    Neural Computing and Applications, Vol. 32 (2020), Iss. 14 P.9953

    https://doi.org/10.1007/s00521-019-04519-9 [Citations: 2]
  2. A hybrid sinc-Galerkin/finite-difference method for the time-dependent Wigner equation

    Jiang, Haiyan | Lu, Tiao | Zhang, Weitong

    Journal of Computational and Applied Mathematics, Vol. 409 (2022), Iss. P.114152

    https://doi.org/10.1016/j.cam.2022.114152 [Citations: 2]
  3. Scientific Computing in Electrical Engineering

    Wigner Monte Carlo Simulation of a Double Potential Barrier

    Muscato, Orazio

    2020

    https://doi.org/10.1007/978-3-030-44101-2_15 [Citations: 0]
  4. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes

    Dorda, Antonius | Schürrer, Ferdinand

    Journal of Computational Physics, Vol. 284 (2015), Iss. P.95

    https://doi.org/10.1016/j.jcp.2014.12.026 [Citations: 27]
  5. Efficient Monte Carlo-based algorithms for the Wigner transport equation

    Muscato, Orazio | Di Stefano, Vincenza

    Journal of Physics: Conference Series, Vol. 906 (2017), Iss. P.012011

    https://doi.org/10.1088/1742-6596/906/1/012011 [Citations: 0]
  6. An Advective-Spectral-Mixed Method for Time-Dependent Many-Body Wigner Simulations

    Xiong, Yunfeng | Chen, Zhenzhu | Shao, Sihong

    SIAM Journal on Scientific Computing, Vol. 38 (2016), Iss. 4 P.B491

    https://doi.org/10.1137/15M1051373 [Citations: 20]
  7. Efficient solution of the Wigner–Liouville equation using a spectral decomposition of the force field

    Van de Put, Maarten L. | Sorée, Bart | Magnus, Wim

    Journal of Computational Physics, Vol. 350 (2017), Iss. P.314

    https://doi.org/10.1016/j.jcp.2017.08.059 [Citations: 16]
  8. Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode

    Muscato, Orazio

    Axioms, Vol. 12 (2023), Iss. 2 P.216

    https://doi.org/10.3390/axioms12020216 [Citations: 0]
  9. Wigner ensemble Monte Carlo simulation without splitting error of a GaAs resonant tunneling diode

    Muscato, Orazio

    Journal of Computational Electronics, Vol. 20 (2021), Iss. 6 P.2062

    https://doi.org/10.1007/s10825-021-01734-3 [Citations: 4]
  10. Comparison of deterministic and stochastic methods for time-dependent Wigner simulations

    Shao, Sihong | Sellier, Jean Michel

    Journal of Computational Physics, Vol. 300 (2015), Iss. P.167

    https://doi.org/10.1016/j.jcp.2015.08.002 [Citations: 12]
  11. Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods

    Xia, Mingtao | Li, Xiangting | Shen, Qijing | Chou, Tom

    Journal of Applied Mathematics and Computing, Vol. 70 (2024), Iss. 5 P.4395

    https://doi.org/10.1007/s12190-024-02131-2 [Citations: 1]
  12. A Characteristic-Spectral-Mixed Scheme for Six-Dimensional Wigner–Coulomb Dynamics

    Xiong, Yunfeng | Zhang, Yong | Shao, Sihong

    SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 6 P.B906

    https://doi.org/10.1137/22M1494294 [Citations: 2]
  13. A frequency-dependent p-adaptive technique for spectral methods

    Xia, Mingtao | Shao, Sihong | Chou, Tom

    Journal of Computational Physics, Vol. 446 (2021), Iss. P.110627

    https://doi.org/10.1016/j.jcp.2021.110627 [Citations: 7]
  14. Semi-spectral method for the Wigner equation

    Furtmaier, O. | Succi, S. | Mendoza, M.

    Journal of Computational Physics, Vol. 305 (2016), Iss. P.1015

    https://doi.org/10.1016/j.jcp.2015.11.023 [Citations: 9]
  15. Stationary Wigner Equation with Inflow Boundary Conditions: Will a Symmetric Potential Yield a Symmetric Solution?

    Li, Ruo | Lu, Tiao | Sun, Zhangpeng

    SIAM Journal on Applied Mathematics, Vol. 74 (2014), Iss. 3 P.885

    https://doi.org/10.1137/130941754 [Citations: 10]
  16. A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation

    Muscato, Orazio

    Communications in Applied and Industrial Mathematics, Vol. 8 (2017), Iss. 1 P.237

    https://doi.org/10.1515/caim-2017-0012 [Citations: 6]
  17. The Wigner function of ground state and one-dimensional numerics

    Zhan, Hongfei | Cai, Zhenning | Hu, Guanghui

    Journal of Computational Physics, Vol. 449 (2022), Iss. P.110780

    https://doi.org/10.1016/j.jcp.2021.110780 [Citations: 3]
  18. A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences

    Chen, Zhenzhu | Shao, Sihong | Cai, Wei

    Journal of Computational Physics, Vol. 396 (2019), Iss. P.54

    https://doi.org/10.1016/j.jcp.2019.06.047 [Citations: 8]
  19. Numerical Methods for the Wigner Equation with Unbounded Potential

    Chen, Zhenzhu | Xiong, Yunfeng | Shao, Sihong

    Journal of Scientific Computing, Vol. 79 (2019), Iss. 1 P.345

    https://doi.org/10.1007/s10915-018-0853-0 [Citations: 9]
  20. Recent Advances in Computational Optimization

    Improved Stochastic Approaches for Evaluation of the Wigner Kernel

    Todorov, Venelin | Dimov, Ivan | Poryazov, Stoyan

    2022

    https://doi.org/10.1007/978-3-030-82397-9_23 [Citations: 0]
  21. Optimization Modeling and Simulating of the Stationary Wigner Inflow Boundary Value Problem

    Sun, Zhangpeng | Yao, Wenqi | Lu, Tiao

    Journal of Scientific Computing, Vol. 85 (2020), Iss. 1

    https://doi.org/10.1007/s10915-020-01338-2 [Citations: 2]
  22. Numerical Validation for High Order Hyperbolic Moment System of Wigner Equation

    Li, Ruo | Lu, Tiao | Wang, Yanli | Yao, Wenqi

    Communications in Computational Physics, Vol. 15 (2014), Iss. 3 P.569

    https://doi.org/10.4208/cicp.091012.120813a [Citations: 5]
  23. Recent Advances in Computational Optimization

    An Efficient Adaptive Monte Carlo Approach for Multidimensional Quantum Mechanics

    Todorov, Venelin | Dimov, Ivan

    2022

    https://doi.org/10.1007/978-3-031-06839-3_18 [Citations: 0]
  24. Quantum hydrodynamic model by moment closure of Wigner equation

    Cai, Zhenning | Fan, Yuwei | Li, Ruo | Lu, Tiao | Wang, Yanli

    Journal of Mathematical Physics, Vol. 53 (2012), Iss. 10

    https://doi.org/10.1063/1.4748971 [Citations: 18]
  25. Stability and accuracy of a pseudospectral scheme for the Wigner function equation

    Thomann, Andrea | Borzì, Alfio

    Numerical Methods for Partial Differential Equations, Vol. 33 (2017), Iss. 1 P.62

    https://doi.org/10.1002/num.22072 [Citations: 8]
  26. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    Jiang, Haiyan | Lu, Tiao | Cai, Wei

    Journal of Computational Physics, Vol. 258 (2014), Iss. P.773

    https://doi.org/10.1016/j.jcp.2013.11.007 [Citations: 13]
  27. A higher-order accurate operator splitting spectral method for the Wigner–Poisson system

    Chen, Zhenzhu | Jiang, Haiyan | Shao, Sihong

    Journal of Computational Electronics, Vol. 21 (2022), Iss. 4 P.756

    https://doi.org/10.1007/s10825-022-01904-x [Citations: 3]
  28. Classical limit for the varying-mass Schrödinger equation with random inhomogeneities

    Chen, Shi | Li, Qin | Yang, Xu

    Journal of Computational Physics, Vol. 438 (2021), Iss. P.110365

    https://doi.org/10.1016/j.jcp.2021.110365 [Citations: 1]
  29. Wigner Monte Carlo simulation without discretization error of the tunneling rectangular barrier

    Muscato, Orazio | Di Stefano, Vincenza

    Communications in Applied and Industrial Mathematics, Vol. 10 (2019), Iss. 1 P.20

    https://doi.org/10.2478/caim-2019-0009 [Citations: 1]
  30. A Hybrid SBP-SAT/Fourier Pseudo-spectral Method for the Transient Wigner Equation Involving Inflow Boundary Conditions

    Sun, Zhangpeng | Yao, Wenqi | Yu, Qiuping

    Journal of Scientific Computing, Vol. 100 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02582-6 [Citations: 0]
  31. A Class of Stochastic Algorithms for the Wigner Equation

    Muscato, Orazio | Wagner, Wolfgang

    SIAM Journal on Scientific Computing, Vol. 38 (2016), Iss. 3 P.A1483

    https://doi.org/10.1137/16M105798X [Citations: 39]
  32. Nonlocalization of singular potentials in quantum dynamics

    Shao, Sihong | Su, Lili

    Journal of Computational Electronics, Vol. 22 (2023), Iss. 4 P.930

    https://doi.org/10.1007/s10825-023-02042-8 [Citations: 0]
  33. Stochastic Approaches to Electron Transport in Micro- and Nanostructures

    Stationary Quantum Particle Attributes

    Nedjalkov, Mihail | Dimov, Ivan | Selberherr, Siegfried

    2021

    https://doi.org/10.1007/978-3-030-67917-0_14 [Citations: 0]
  34. An Optimal Control Problem for the Wigner Equation

    Morandi, Omar | Rotundo, Nella | Borzì, Alfio | Barletti, Luigi

    SIAM Journal on Applied Mathematics, Vol. 84 (2024), Iss. 2 P.387

    https://doi.org/10.1137/22M1515033 [Citations: 0]
  35. Formulation of a phase space exponential operator for the Wigner transport equation accounting for the spatial variation of the effective mass

    Schulz, Lukas | Schulz, Dirk

    Journal of Computational Electronics, Vol. 19 (2020), Iss. 4 P.1399

    https://doi.org/10.1007/s10825-020-01551-0 [Citations: 9]
  36. Numerical Study of Transient Wigner–Poisson Model for RTDs: Numerical Method and Its Applications

    Jiang, Haiyan | Lu, Tiao | Yao, Wenqi | Zhang, Weitong

    SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 4 P.A1766

    https://doi.org/10.1137/22M1502872 [Citations: 0]
  37. Parity-decomposition and moment analysis for stationary Wigner equation with inflow boundary conditions

    Li, Ruo | Lu, Tiao | Sun, Zhangpeng

    Frontiers of Mathematics in China, Vol. 12 (2017), Iss. 4 P.907

    https://doi.org/10.1007/s11464-017-0612-9 [Citations: 8]