On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes

On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 807–827

Abstract

In this paper we consider two commonly used classes of finite volume weighted essentially non-oscillatory (WENO) schemes in two dimensional Cartesian meshes. We compare them in terms of accuracy, performance for smooth and shocked solutions, and efficiency in CPU timing. For linear systems both schemes are high order accurate, however for nonlinear systems, analysis and numerical simulation results verify that one of them (Class A) is only second order accurate, while the other (Class B) is high order accurate. The WENO scheme in Class A is easier to implement and costs less than that in Class B. Numerical experiments indicate that the resolution for shocked problems is often comparable for schemes in both classes for the same building blocks and meshes, despite of the difference in their formal order of accuracy. The results in this paper may give some guidance in the application of high order finite volume schemes for simulating shocked flows.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.291109.080410s

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 807–827

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:   

  1. Exploring the potential of TENO and WENO schemes for simulating under-resolved turbulent flows in the atmosphere using Euler equations

    Navas-Montilla, A. | Guallart, J. | Solán-Fustero, P. | García-Navarro, P.

    Computers & Fluids, Vol. 280 (2024), Iss. P.106349

    https://doi.org/10.1016/j.compfluid.2024.106349 [Citations: 0]
  2. EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes

    Bakhvalov, Pavel | Kozubskaya, Tatiana

    Computers & Fluids, Vol. 157 (2017), Iss. P.312

    https://doi.org/10.1016/j.compfluid.2017.09.004 [Citations: 46]
  3. A Computational Method for the Simulation of Hot Spot Formations and Detonation in Polymer-Bonded Explosives<br />

    Akiki, Michel | Gallagher, Tim | Menon, Suresh

    51st AIAA/SAE/ASEE Joint Propulsion Conference, (2015),

    https://doi.org/10.2514/6.2015-4099 [Citations: 1]
  4. High-order central-upwind shock capturing scheme using a Boundary Variation Diminishing (BVD) algorithm

    Chamarthi, Amareshwara Sainadh | Frankel, Steven H.

    Journal of Computational Physics, Vol. 427 (2021), Iss. P.110067

    https://doi.org/10.1016/j.jcp.2020.110067 [Citations: 14]
  5. Finite volume WENO methods for hyperbolic conservation laws on Cartesian grids with adaptive mesh refinement

    Buchmüller, Pawel | Dreher, Jürgen | Helzel, Christiane

    Applied Mathematics and Computation, Vol. 272 (2016), Iss. P.460

    https://doi.org/10.1016/j.amc.2015.03.078 [Citations: 12]
  6. The adaptive GRP scheme for compressible fluid flows over unstructured meshes

    Li, Jiequan | Zhang, Yongjin

    Journal of Computational Physics, Vol. 242 (2013), Iss. P.367

    https://doi.org/10.1016/j.jcp.2013.02.003 [Citations: 6]
  7. Sensitivity Parameter-Independent Characteristic-Wise Well-Balanced Finite Volume WENO Scheme for the Euler Equations Under Gravitational Fields

    Li, Peng | Wang, Bao-Shan | Don, Wai-Sun

    Journal of Scientific Computing, Vol. 88 (2021), Iss. 2

    https://doi.org/10.1007/s10915-021-01562-4 [Citations: 7]
  8. Comparison of Upwind and Symmetric WENO Schemes in Large Eddy Simulation of Basic Turbulent Flows

    Bakhne, S. | Troshin, A. I.

    Computational Mathematics and Mathematical Physics, Vol. 63 (2023), Iss. 6 P.1122

    https://doi.org/10.1134/S0965542523060039 [Citations: 2]
  9. An implicit large eddy simulation method based on all-speed schemes

    Sun, Di | Qu, Feng | Bai, Junqiang

    Computers & Mathematics with Applications, Vol. 114 (2022), Iss. P.1

    https://doi.org/10.1016/j.camwa.2022.03.037 [Citations: 2]
  10. A hybrid ENO reconstruction with limiters for systems of hyperbolic conservation laws

    Iqbal Peer, Arshad Ahmud | Tangman, Désiré Yannick | Bhuruth, Muddun

    Mathematical Sciences, Vol. 7 (2013), Iss. 1

    https://doi.org/10.1186/2251-7456-7-15 [Citations: 1]
  11. Economically high‐order unstructured‐grid methods: Clarification and efficient FSR schemes

    Nishikawa, Hiroaki

    International Journal for Numerical Methods in Fluids, Vol. 93 (2021), Iss. 11 P.3187

    https://doi.org/10.1002/fld.5028 [Citations: 10]
  12. Version [1.1]—[MSAT: Matrix stability analysis tool for shock-capturing schemes]

    Ren, Weijie | Xie, Wenjia | Zhang, Ye | Yu, Hang | Tian, Zhengyu

    SoftwareX, Vol. 26 (2024), Iss. P.101695

    https://doi.org/10.1016/j.softx.2024.101695 [Citations: 0]
  13. A Method for Choosing the Spatial and Temporal Approximations for the LES Approach

    Bakhne, Sergei | Sabelnikov, Vladimir

    Fluids, Vol. 7 (2022), Iss. 12 P.376

    https://doi.org/10.3390/fluids7120376 [Citations: 8]
  14. New High-order Methods using Gaussian Processes for Computational Fluid Dynamics Simulations

    Lee, Dongwook | Reyes, Adam | Graziani, Carlo | Tzeferacos, Petros

    Journal of Physics: Conference Series, Vol. 837 (2017), Iss. P.012018

    https://doi.org/10.1088/1742-6596/837/1/012018 [Citations: 2]
  15. Comparison of Gradient Approximation Methods in Schemes Designed for Scale-Resolving Simulations

    Bakhne, S. | Bosniakov, S. M. | Mikhailov, S. V. | Troshin, A. I.

    Mathematical Models and Computer Simulations, Vol. 12 (2020), Iss. 3 P.357

    https://doi.org/10.1134/S2070048220030072 [Citations: 3]
  16. Integrated Lagrangian and Eulerian 3D microstructure-explicit simulations for predicting macroscopic probabilistic SDT thresholds of energetic materials

    Wei, Yaochi | Ranjan, Reetesh | Roy, Ushasi | Shin, Ju Hwan | Menon, Suresh | Zhou, Min

    Computational Mechanics, Vol. 64 (2019), Iss. 2 P.547

    https://doi.org/10.1007/s00466-019-01729-9 [Citations: 12]
  17. Seventh order compact-WENO scheme for hyperbolic conservation laws

    Guo, Yan | Shi, YuFeng

    Computers & Fluids, Vol. 176 (2018), Iss. P.193

    https://doi.org/10.1016/j.compfluid.2018.09.006 [Citations: 9]
  18. The Piecewise Cubic Method (PCM) for computational fluid dynamics

    Lee, Dongwook | Faller, Hugues | Reyes, Adam

    Journal of Computational Physics, Vol. 341 (2017), Iss. P.230

    https://doi.org/10.1016/j.jcp.2017.04.004 [Citations: 17]
  19. A Sequel of Inverse Lax–Wendroff High Order Wall Boundary Treatment for Conservation Laws

    Borges, Rafael B. de Rezende | da Silva, Nicholas Dicati P. | Gomes, Francisco A. A. | Shu, Chi-Wang | Tan, Sirui

    Archives of Computational Methods in Engineering, Vol. 28 (2021), Iss. 4 P.2315

    https://doi.org/10.1007/s11831-020-09454-w [Citations: 4]
  20. An application of Gaussian process modeling for high-order accurate adaptive mesh refinement prolongation

    Reeves, Steven I. | Lee, Dongwook | Reyes, Adam | Graziani, Carlo | Tzeferacos, Petros

    Communications in Applied Mathematics and Computational Science, Vol. 17 (2022), Iss. 1 P.1

    https://doi.org/10.2140/camcos.2022.17.1 [Citations: 1]
  21. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    Rembiasz, Tomasz | Obergaulinger, Martin | Cerdá-Durán, Pablo | Aloy, Miguel-Ángel | Müller, Ewald

    The Astrophysical Journal Supplement Series, Vol. 230 (2017), Iss. 2 P.18

    https://doi.org/10.3847/1538-4365/aa6254 [Citations: 28]
  22. Novel TENO schemes with improved accuracy order based on perturbed polynomial reconstruction

    Yang, Tao | Zhao, Guoqing | Zhao, Qijun

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112219

    https://doi.org/10.1016/j.jcp.2023.112219 [Citations: 4]
  23. High-Order and High Accurate CFD Methods and Their Applications for Complex Grid Problems

    Deng, Xiaogang | Mao, Meiliang | Tu, Guohua | Zhang, Hanxin | Zhang, Yifeng

    Communications in Computational Physics, Vol. 11 (2012), Iss. 4 P.1081

    https://doi.org/10.4208/cicp.100510.150511s [Citations: 59]
  24. An effective high-order numerical method for solving the Reynolds equation system in the case of civil aircraft high lift wing

    Bosnyakov, S. M. | Bosnyakov, I. S. | Engulatova, M. F. | Matyash, I. S. | Mikhailov, S. V. | Podaruev, V. Yu. | Volkov, A. V.

    HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020): Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, dedicated to the 90th anniversary of the birth of RI Soloukhin, (2020), P.020003

    https://doi.org/10.1063/5.0029238 [Citations: 0]
  25. Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids

    Buchmüller, Pawel | Helzel, Christiane

    Journal of Scientific Computing, Vol. 61 (2014), Iss. 2 P.343

    https://doi.org/10.1007/s10915-014-9825-1 [Citations: 48]
  26. A study of multidimensional fifth-order WENO method for genuinely two-dimensional Riemann solver

    Zhou, Boxiao | Qu, Feng | Liu, Qingsong | Sun, Di | Bai, Junqiang

    Journal of Computational Physics, Vol. 463 (2022), Iss. P.111249

    https://doi.org/10.1016/j.jcp.2022.111249 [Citations: 4]
  27. TILDA: Towards Industrial LES/DNS in Aeronautics

    Implementation of High Order Discontinuous Galerkin Method and Its Verification Using Taylor-Green Vortex and Periodic Hills Test Cases

    Bosnyakov, Igor | Mikhaylov, Sergey | Podaruev, Vladimir | Troshin, Alexey | Wolkov, Andrey

    2021

    https://doi.org/10.1007/978-3-030-62048-6_12 [Citations: 0]
  28. Fifth order AWENO finite difference scheme with adaptive numerical diffusion for Euler equations

    Wang, Yinghua | Don, Wai Sun | Wang, Bao-Shan

    Computers & Fluids, Vol. 251 (2023), Iss. P.105743

    https://doi.org/10.1016/j.compfluid.2022.105743 [Citations: 3]
  29. High-Order Wave Propagation Algorithms for Hyperbolic Systems

    Ketcheson, David I. | Parsani, Matteo | LeVeque, Randall J.

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 1 P.A351

    https://doi.org/10.1137/110830320 [Citations: 54]
  30. Compact High-Order Gas-Kinetic Scheme for Three-Dimensional Flow Simulations

    Ji, Xing | Zhao, Fengxiang | Shyy, Wei | Xu, Kun

    AIAA Journal, Vol. (2021), Iss. P.1

    https://doi.org/10.2514/1.J060208 [Citations: 5]
  31. Gradient based reconstruction: Inviscid and viscous flux discretizations, shock capturing, and its application to single and multicomponent flows

    Chamarthi, Amareshwara Sainadh

    Computers & Fluids, Vol. 250 (2023), Iss. P.105706

    https://doi.org/10.1016/j.compfluid.2022.105706 [Citations: 11]
  32. Improved Delayed Detached Eddy Simulation of Combustion of Hydrogen Jets in a High-Speed Confined Hot Air Cross Flow II: New Results

    Bakhne, Sergei | Vlasenko, Vladimir | Troshin, Alexei | Sabelnikov, Vladimir | Savelyev, Andrey

    Energies, Vol. 16 (2023), Iss. 21 P.7262

    https://doi.org/10.3390/en16217262 [Citations: 1]
  33. High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments

    Shu, Chi-Wang

    Journal of Computational Physics, Vol. 316 (2016), Iss. P.598

    https://doi.org/10.1016/j.jcp.2016.04.030 [Citations: 126]
  34. A comparative study of the performance of high-resolution non-oscillating advection schemes in the context of the motion induced by mixed region in a stratified fluid

    Moshkin, N. P. | Narong, K. | Chernykh, G. G.

    Journal of Engineering Thermophysics, Vol. 20 (2011), Iss. 4 P.468

    https://doi.org/10.1134/S1810232811040114 [Citations: 0]
  35. Implicit Gradients Based Conservative Numerical Scheme for Compressible Flows

    Chamarthi, Amareshwara Sainadh | Hoffmann, Natan | Nishikawa, Hiroaki | Frankel, Steven H.

    Journal of Scientific Computing, Vol. 95 (2023), Iss. 1

    https://doi.org/10.1007/s10915-023-02141-5 [Citations: 4]
  36. A high-order modified finite-volume method on Cartesian grids for nonlinear convection–diffusion problems

    Du, Yulong | Wang, Yahui | Yuan, Li

    Computational and Applied Mathematics, Vol. 39 (2020), Iss. 3

    https://doi.org/10.1007/s40314-020-01253-0 [Citations: 0]
  37. Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes

    Solán-Fustero, P. | Navas-Montilla, A. | Ferrer, E. | Manzanero, J. | García-Navarro, P.

    Journal of Computational Physics, Vol. 435 (2021), Iss. P.110246

    https://doi.org/10.1016/j.jcp.2021.110246 [Citations: 9]
  38. An effective low dissipation method for compressible flows

    Sun, Di | Qu, Feng | Bai, Junqiang | Yan, Chao

    Aerospace Science and Technology, Vol. 100 (2020), Iss. P.105757

    https://doi.org/10.1016/j.ast.2020.105757 [Citations: 7]
  39. Constructing higher order discontinuity-capturing schemes with upwind-biased interpolations and boundary variation diminishing algorithm

    Deng, Xi | Shimizu, Yuya | Xie, Bin | Xiao, Feng

    Computers & Fluids, Vol. 200 (2020), Iss. P.104433

    https://doi.org/10.1016/j.compfluid.2020.104433 [Citations: 25]
  40. On Using Artificial Viscosity in Edge-Based Schemes on Unstructured Grids

    Bakhvalov, P. A. | Kozubskaya, T. K.

    Mathematical Models and Computer Simulations, Vol. 13 (2021), Iss. 4 P.705

    https://doi.org/10.1134/S2070048221040050 [Citations: 0]
  41. Reprint of: EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes

    Bakhvalov, Pavel | Kozubskaya, Tatiana

    Computers & Fluids, Vol. 169 (2018), Iss. P.98

    https://doi.org/10.1016/j.compfluid.2018.03.050 [Citations: 3]
  42. A high-order solver for aerodynamic flow simulations and comparison of different numerical schemes

    Mikhaylov, Sergey | Morozov, Alexander | Podaruev, Vladimir | Troshin, Alexey

    (2017) P.050004

    https://doi.org/10.1063/1.5012317 [Citations: 2]
  43. Comparison of the performance of high-order schemes based on the gas-kinetic and HLLC fluxes

    Yang, Xiaojian | Ji, Xing | Shyy, Wei | Xu, Kun

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110706

    https://doi.org/10.1016/j.jcp.2021.110706 [Citations: 10]
  44. Towards the ultimate understanding of MUSCL: Pitfalls in achieving third-order accuracy

    van Leer, Bram | Nishikawa, Hiroaki

    Journal of Computational Physics, Vol. 446 (2021), Iss. P.110640

    https://doi.org/10.1016/j.jcp.2021.110640 [Citations: 22]
  45. Locally order-preserving mapping for WENO methods

    Li, Ruo | Zhong, Wei

    Journal of Computational and Applied Mathematics, Vol. 424 (2023), Iss. P.115004

    https://doi.org/10.1016/j.cam.2022.115004 [Citations: 2]
  46. Turbulent flow simulation based on the IDDES approach using the code zFlare

    Troshin, A.I. | Molev, S.S. | Vlasenko, V.V. | Mikhaylov, S.V. | Bakhne, S. | Matyash, S.V.

    Computational Continuum Mechanics, Vol. 16 (2023), Iss. 2 P.203

    https://doi.org/10.7242/1999-6691/2023.16.2.18 [Citations: 2]
  47. Сравнение методов аппроксимации градиентов в схемах, ориентированных на вихреразрешающие расчеты

    Бахнэ, Сергей | Bakhne, Sergei | Босняков, Сергей Михайлович | Bosnyakov, Sergei Mikhailovich | Михайлов, Сергей Владимирович | Mikhailov, Sergei Vladimirovich | Трошин, Алексей Игоревич | Troshin, Aleksei Igorevich

    Математическое моделирование, Vol. 31 (2019), Iss. 10 P.7

    https://doi.org/10.1134/S0234087919100010 [Citations: 1]
  48. Topology and flame speeds of turbulent premixed flame kernels in supersonic flows

    Ochs, Bradley A. | Ranjan, Reetesh | Ranjan, Devesh | Menon, Suresh

    Combustion and Flame, Vol. 210 (2019), Iss. P.83

    https://doi.org/10.1016/j.combustflame.2019.07.029 [Citations: 15]
  49. A High-order Weighted Finite Difference Scheme with a Multistate Approximate Riemann Solver for Divergence-free Magnetohydrodynamic Simulations

    Minoshima, Takashi | Miyoshi, Takahiro | Matsumoto, Yosuke

    The Astrophysical Journal Supplement Series, Vol. 242 (2019), Iss. 2 P.14

    https://doi.org/10.3847/1538-4365/ab1a36 [Citations: 16]
  50. Comparison of Convective Terms’ Approximations in DES Family Methods

    Bakhne, S.

    Mathematical Models and Computer Simulations, Vol. 14 (2022), Iss. 1 P.99

    https://doi.org/10.1134/S2070048222010057 [Citations: 2]
  51. An improved consistent, conservative, non-oscillatory and high order finite difference scheme for variable density low Mach number turbulent flow simulation

    Su, Yunde | Kim, Seung Hyun

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.202

    https://doi.org/10.1016/j.jcp.2018.06.021 [Citations: 7]
  52. Об использовании искусственной вязкости в рeберно-ориентированных схемах на неструктурированных сетках

    Бахвалов, Павел Алексеевич | Bakhvalov, Pavel Alekseevich | Козубская, Татьяна Константиновна | Kozubskaya, Tatiana Konstantinovna

    Математическое моделирование, Vol. 32 (2020), Iss. 12 P.114

    https://doi.org/10.20948/mm-2020-12-10 [Citations: 0]
  53. A variable high-order shock-capturing finite difference method with GP-WENO

    Reyes, Adam | Lee, Dongwook | Graziani, Carlo | Tzeferacos, Petros

    Journal of Computational Physics, Vol. 381 (2019), Iss. P.189

    https://doi.org/10.1016/j.jcp.2018.12.028 [Citations: 15]
  54. High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model

    Zhang, Rui | Zhang, Mengping | Shu, Chi-Wang

    Journal of Computational and Applied Mathematics, Vol. 236 (2011), Iss. 5 P.937

    https://doi.org/10.1016/j.cam.2011.05.007 [Citations: 8]
  55. A New Class of High-Order Methods for Fluid Dynamics Simulations Using Gaussian Process Modeling: One-Dimensional Case

    Reyes, Adam | Lee, Dongwook | Graziani, Carlo | Tzeferacos, Petros

    Journal of Scientific Computing, Vol. 76 (2018), Iss. 1 P.443

    https://doi.org/10.1007/s10915-017-0625-2 [Citations: 10]
  56. A New Adaptation Strategy for Multi-resolution Method

    Fu, Lin | Liang, Tian

    Journal of Scientific Computing, Vol. 93 (2022), Iss. 2

    https://doi.org/10.1007/s10915-022-02012-5 [Citations: 4]
  57. A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm

    Deng, Xi | Shimizu, Yuya | Xiao, Feng

    Journal of Computational Physics, Vol. 386 (2019), Iss. P.323

    https://doi.org/10.1016/j.jcp.2019.02.024 [Citations: 52]
  58. A Strategy to Implement High-Order WENO Schemes on Unstructured Grids

    Sheng, Chunhua | Zhao, Qiuying | Zhong, Dongdong | Ge, Ning

    AIAA Aviation 2019 Forum, (2019),

    https://doi.org/10.2514/6.2019-2955 [Citations: 4]
  59. Curvilinear grids for WENO methods in astrophysical simulations

    Grimm-Strele, H. | Kupka, F. | Muthsam, H.J.

    Computer Physics Communications, Vol. 185 (2014), Iss. 3 P.764

    https://doi.org/10.1016/j.cpc.2013.11.005 [Citations: 9]
  60. Hybrid Discontinuous Galerkin/Finite Volume Method with Subcell Resolution for Shocked Flows

    Jiang, Zhen-Hua | Deng, Xi | Xiao, Feng | Yan, Chao | Yu, Jian | Lou, Shuai

    AIAA Journal, Vol. 59 (2021), Iss. 6 P.2027

    https://doi.org/10.2514/1.J059763 [Citations: 4]
  61. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions

    Wang, Xiufang | Yu, Haiyan | Li, Gang | Gao, Jinmei

    Applied Mathematics and Computation, Vol. 359 (2019), Iss. P.132

    https://doi.org/10.1016/j.amc.2019.04.025 [Citations: 1]
  62. A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods

    Ji, Xing | Zhao, Fengxiang | Shyy, Wei | Xu, Kun

    Journal of Computational Physics, Vol. 356 (2018), Iss. P.150

    https://doi.org/10.1016/j.jcp.2017.11.036 [Citations: 44]
  63. KFVM-WENO: A High-order Accurate Kernel-based Finite Volume Method for Compressible Hydrodynamics

    May, Ian C. T. | Lee, Dongwook

    The Astrophysical Journal, Vol. 967 (2024), Iss. 1 P.6

    https://doi.org/10.3847/1538-4357/ad37fb [Citations: 0]
  64. Application of High-Order Discontinuous Galerkin Method to LES/DES Test Cases Using Computers with High Number of Cores

    Bosnyakov, Igor | Mikhaylov, Sergey | Podaruev, Vladimir | Troshin, Alexei | Vlasenko, Vladimir | Wolkov, Andrey V.

    23rd AIAA Computational Fluid Dynamics Conference, (2017),

    https://doi.org/10.2514/6.2017-3943 [Citations: 4]
  65. Fifth order finite volume WENO in general orthogonally - curvilinear coordinates

    Shadab, Mohammad Afzal | Balsara, Dinshaw | Shyy, Wei | Xu, Kun

    Computers & Fluids, Vol. 190 (2019), Iss. P.398

    https://doi.org/10.1016/j.compfluid.2019.06.031 [Citations: 7]
  66. On the performance of high resolution non-oscillating advection schemes in the context of the flow generated by a mixed region in a stratified fluid

    Moshkin, N.P. | Chernykh, G.G. | Narong, Kridsada

    Mathematics and Computers in Simulation, Vol. 127 (2016), Iss. P.203

    https://doi.org/10.1016/j.matcom.2012.11.005 [Citations: 1]
  67. A Novel Teno Scheme with Improved Order of Accuracy Based on Perturbed Polynomial Reconstruction

    Yang, Tao | Zhao, Guoqing | Zhao, Qijun

    SSRN Electronic Journal, Vol. (2023), Iss.

    https://doi.org/10.2139/ssrn.4353585 [Citations: 0]
  68. High‐order gas kinetic flux solver for viscous compressible flow simulations

    Jiang, Lan | Wu, Jie | Yang, Liming | Dong, Hao

    International Journal for Numerical Methods in Fluids, Vol. 96 (2024), Iss. 5 P.789

    https://doi.org/10.1002/fld.5272 [Citations: 0]
  69. An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach

    Shyue, Keh-Ming | Xiao, Feng

    Journal of Computational Physics, Vol. 268 (2014), Iss. P.326

    https://doi.org/10.1016/j.jcp.2014.03.010 [Citations: 113]
  70. Сравнение аппроксимаций конвективных членов в методах семейства DES

    Бахнэ, Сергей | Bakhne, Sergei

    Математическое моделирование, Vol. 33 (2021), Iss. 7 P.47

    https://doi.org/10.20948/mm-2021-07-04 [Citations: 2]
  71. An efficient Ghost Fluid Method to remove overheating from material interfaces in compressible multi-medium flows

    Bigdelou, Pedram | Liu, Chen | Tarey, Prashant | Ramaprabhu, Praveen

    Computers & Fluids, Vol. 233 (2022), Iss. P.105250

    https://doi.org/10.1016/j.compfluid.2021.105250 [Citations: 6]
  72. A compact fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations

    Ji, Xing | Pan, Liang | Shyy, Wei | Xu, Kun

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.446

    https://doi.org/10.1016/j.jcp.2018.06.034 [Citations: 44]
  73. Resolving Confusion Over Third-Order Accuracy of U-MUSCL

    Padway, Emmett | Nishikawa, Hiroaki

    AIAA Scitech 2021 Forum, (2021),

    https://doi.org/10.2514/6.2021-0056 [Citations: 2]
  74. Investigation of finite-volume methods to capture shocks and turbulence spectra in compressible flows

    Motheau, Emmanuel | Wakefield, John

    Communications in Applied Mathematics and Computational Science, Vol. 15 (2020), Iss. 1 P.1

    https://doi.org/10.2140/camcos.2020.15.1_ [Citations: 16]
  75. Unsteady Discontinuous Galerkin Method of a High Order of Accuracy for Modeling Turbulent Flows

    Bosnyakov, S. M. | Mikhaylov, S. V. | Podaruev, V. Yu. | Troshin, A. I.

    Mathematical Models and Computer Simulations, Vol. 11 (2019), Iss. 1 P.22

    https://doi.org/10.1134/S2070048219010058 [Citations: 5]
  76. Efficient methods with higher order interpolation and MOOD strategy for compressible turbulence simulations

    Jiang, Zhen-Hua | Yan, Chao | Yu, Jian

    Journal of Computational Physics, Vol. 371 (2018), Iss. P.528

    https://doi.org/10.1016/j.jcp.2018.06.018 [Citations: 18]
  77. Efficient ROUND schemes on non-uniform grids applied to discontinuous Galerkin schemes with Godunov-type finite volume sub-cell limiting

    Deng, Xi | Jiang, Zhen-hua | Yan, Chao

    Journal of Computational Physics, Vol. 522 (2025), Iss. P.113575

    https://doi.org/10.1016/j.jcp.2024.113575 [Citations: 0]
  78. Theory, Numerics and Applications of Hyperbolic Problems I

    Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids with Adaptive Mesh Refinement

    Buchmüller, Pawel | Dreher, Jürgen | Helzel, Christiane

    2018

    https://doi.org/10.1007/978-3-319-91545-6_21 [Citations: 1]
  79. Towards Building the OP-Mapped WENO Schemes: A General Methodology

    Li, Ruo | Zhong, Wei

    Mathematical and Computational Applications, Vol. 26 (2021), Iss. 4 P.67

    https://doi.org/10.3390/mca26040067 [Citations: 0]
  80. HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics

    Di Renzo, Mario | Fu, Lin | Urzay, Javier

    Computer Physics Communications, Vol. 255 (2020), Iss. P.107262

    https://doi.org/10.1016/j.cpc.2020.107262 [Citations: 47]
  81. A low-dissipation finite-volume method based on a new TENO shock-capturing scheme

    Fu, Lin

    Computer Physics Communications, Vol. 235 (2019), Iss. P.25

    https://doi.org/10.1016/j.cpc.2018.10.009 [Citations: 51]
  82. A study of higher-order reconstruction methods for genuinely two-dimensional Riemann solver

    Zhou, Boxiao | Qu, Feng | Sun, Di | Wang, Zirui | Bai, Junqiang

    Journal of Computational Physics, Vol. 443 (2021), Iss. P.110469

    https://doi.org/10.1016/j.jcp.2021.110469 [Citations: 1]
  83. Mechanistic Approach for Simulating Hot-Spot Formations and Detonation in Polymer-Bonded Explosives

    Akiki, Michel | Gallagher, Timothy P. | Menon, Suresh

    AIAA Journal, Vol. 55 (2017), Iss. 2 P.585

    https://doi.org/10.2514/1.J054898 [Citations: 18]
  84. Implicit Large Eddy Simulation of weakly-compressible turbulent channel flow

    Kokkinakis, I.W. | Drikakis, D.

    Computer Methods in Applied Mechanics and Engineering, Vol. 287 (2015), Iss. P.229

    https://doi.org/10.1016/j.cma.2015.01.016 [Citations: 66]
  85. A bound-preserving and positivity-preserving finite volume WENO scheme for solving five-equation model of two-medium flows

    Zhang, Fan | Cheng, Jian

    Communications in Nonlinear Science and Numerical Simulation, Vol. 114 (2022), Iss. P.106649

    https://doi.org/10.1016/j.cnsns.2022.106649 [Citations: 9]
  86. Comparison of Upwind and Symmetric WENO Schemes in Large Eddy Simulation of Basic Turbulent Flows

    Bakhne, S. | Troshin, A. I.

    Журнал вычислительной математики и математической физики, Vol. 63 (2023), Iss. 6 P.1024

    https://doi.org/10.31857/S0044466923060030 [Citations: 0]
  87. Resolving Confusions over Third-Order Accuracy of Unstructured MUSCL

    Padway, Emmett | Nishikawa, Hiroaki

    AIAA Journal, Vol. 60 (2022), Iss. 3 P.1415

    https://doi.org/10.2514/1.J060773 [Citations: 5]
  88. A new method towards high-order weno schemes on structured and unstructured grids

    Zhong, Dongdong | Sheng, Chunhua

    Computers & Fluids, Vol. 200 (2020), Iss. P.104453

    https://doi.org/10.1016/j.compfluid.2020.104453 [Citations: 15]
  89. Direct and Large Eddy Simulation XII

    Assessment of LES Using Sliding Interfaces

    Sáez-Mischlich, G. | Grondin, G. | Bodart, J. | Jacob, M. C.

    2020

    https://doi.org/10.1007/978-3-030-42822-8_53 [Citations: 1]