A Hybrid FETD-FDTD Method with Nonconforming Meshes

A Hybrid FETD-FDTD Method with Nonconforming Meshes

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 828–842

Abstract

A quasi non-overlapping hybrid scheme that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method with nonconforming meshes is developed for time-domain solutions of Maxwell's equations. The FETD method uses mixed-order basis functions for electric and magnetic fields, while the FDTD method uses the traditional Yee's grid; the two methods are joined by a buffer zone with the FETD method and the discontinuous Galerkin method is used for the domain decomposition in the FETD subdomains. The main features of this technique is that it allows non-conforming meshes and an arbitrary numbers of FETD and FDTD subdomains. The hybrid method is completely stable for the time steps up to the stability limit for the FDTD method and FETD method. Numerical results demonstrate the validity of this technique.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.230909.140410s

Communications in Computational Physics, Vol. 9 (2011), Iss. 3 : pp. 828–842

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:   

  1. Analysis of photonic crystals using the hybrid finite‐element/finite‐difference time domain technique based on the discontinuous Galerkin method

    Zhu, Bao | Chen, Jiefu | Zhong, Wanxie | Liu, Qing Huo

    International Journal for Numerical Methods in Engineering, Vol. 92 (2012), Iss. 5 P.495

    https://doi.org/10.1002/nme.4348 [Citations: 4]
  2. 3-D Implicit–Explicit Hybrid Finite Difference/Spectral Element/Finite Element Time Domain Method Without a Buffer Zone

    Sun, Qingtao | Zhang, Runren | Zhan, Qiwei | Liu, Qing Huo

    IEEE Transactions on Antennas and Propagation, Vol. 67 (2019), Iss. 8 P.5469

    https://doi.org/10.1109/TAP.2019.2913740 [Citations: 24]
  3. A Hybrid Spectral-Element Finite-Difference Time-Domain Method for Electromagnetic Simulation

    Bao, H. G. | Ding, D. Z. | Chen, R. S.

    IEEE Antennas and Wireless Propagation Letters, Vol. 16 (2017), Iss. P.2244

    https://doi.org/10.1109/LAWP.2017.2711001 [Citations: 16]
  4. Rotated Subgrids in the FDTD Method

    Railton, Chris J.

    IEEE Transactions on Antennas and Propagation, Vol. 64 (2016), Iss. 7 P.3047

    https://doi.org/10.1109/TAP.2016.2559520 [Citations: 4]
  5. Prediction of evanescent coupling efficiency in two parallel silica nanowires

    Sheu, Tony W.H. | Kao, C.Y. | Chang, Y.W. | Li, J.H.

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 3 P.707

    https://doi.org/10.1016/j.camwa.2019.02.033 [Citations: 2]
  6. 3-D Domain Decomposition Based Hybrid Finite-Difference Time-Domain/Finite-Element Time-Domain Method With Nonconformal Meshes

    Sun, Qingtao | Ren, Qiang | Zhan, Qiwei | Liu, Qing Huo

    IEEE Transactions on Microwave Theory and Techniques, Vol. 65 (2017), Iss. 10 P.3682

    https://doi.org/10.1109/TMTT.2017.2686386 [Citations: 23]
  7. Advanced Structural Damage Detection

    Numerical Simulation of Elastic Wave Propagation

    Paćko, Paweł

    2013

    https://doi.org/10.1002/9781118536148.ch2 [Citations: 1]
  8. Analysis of a UWB Hemispherical Antenna Array in FDTD With a Time Domain Huygens Method

    Christodoulou, Chrysovalanto | Railton, Chris J. | Klemm, M. | Gibbins, David | Craddock, Ian J.

    IEEE Transactions on Antennas and Propagation, Vol. 60 (2012), Iss. 11 P.5251

    https://doi.org/10.1109/TAP.2012.2207670 [Citations: 16]
  9. Essentials of Computational Electromagnetics

    Finite‐Element Method

    2012

    https://doi.org/10.1002/9780470829646.ch3 [Citations: 0]
  10. An optimal nearly analytic discrete-weighted Runge-Kutta discontinuous Galerkin hybrid method for acoustic wavefield modeling

    Yang, Dinghui | He, Xijun | Ma, Xiao | Zhou, Yanjie | Li, Jingshuang

    GEOPHYSICS, Vol. 81 (2016), Iss. 5 P.T251

    https://doi.org/10.1190/geo2015-0686.1 [Citations: 16]
  11. A hybrid finite‐element/finite‐difference method with an implicit–explicit time‐stepping scheme for Maxwell's equations

    Zhu, B. | Chen, J. | Zhong, W. | Liu, Q. H.

    International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 25 (2012), Iss. 5-6 P.607

    https://doi.org/10.1002/jnm.1853 [Citations: 9]
  12. A hybrid finite-element / finite-difference method with implicit-explicit time stepping scheme for Maxwell's equations

    Zhu, Bao | Chen, Jiefu | Zhong, Wanxie

    2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics, (2011), P.481

    https://doi.org/10.1109/ICMTCE.2011.5915564 [Citations: 2]
  13. Novel Hybrid FETD–FDTD Formulations for Dispersive Media

    Akbarzadeh-Sharbaf, Ali | Giannacopoulos, Dennis D.

    IEEE Transactions on Magnetics, Vol. 51 (2015), Iss. 3 P.1

    https://doi.org/10.1109/TMAG.2014.2355593 [Citations: 0]
  14. A novel hybrid method based on discontinuous Galerkin method and staggered‐grid method for scalar wavefield modelling with rough topography

    Huang, Jiandong | Hu, Tianyue | Song, Jianyong | Li, Yandong | Yu, Zhenzhen | Liu, Lichao

    Geophysical Prospecting, Vol. 70 (2022), Iss. 3 P.441

    https://doi.org/10.1111/1365-2478.13171 [Citations: 8]
  15. Discontinuous Galerkin Time-Domain Methods for Multiscale Electromagnetic Simulations: A Review

    Chen, Jiefu | Liu, Qing Huo

    Proceedings of the IEEE, Vol. 101 (2013), Iss. 2 P.242

    https://doi.org/10.1109/JPROC.2012.2219031 [Citations: 150]
  16. A discontinuous Galerkin method for simulating the effects of arbitrary discrete fractures on elastic wave propagation

    Zhan, Qiwei | Sun, Qingtao | Ren, Qiang | Fang, Yuan | Wang, Hua | Liu, Qing Huo

    Geophysical Journal International, Vol. 210 (2017), Iss. 2 P.1219

    https://doi.org/10.1093/gji/ggx233 [Citations: 56]
  17. New 3D hybrid FDTD-FETD method with non-conformal mesh

    Sun, Qingtao | Liu, Qing Huo

    2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (2015), P.1826

    https://doi.org/10.1109/APS.2015.7305302 [Citations: 1]
  18. A 3-D Hybrid Maxwell’s Equations Finite-Difference Time-Domain (ME-FDTD)/Wave Equation Finite-Element Time-Domain (WE-FETD) Method

    Wang, Jiaxuan | Ren, Qiang

    IEEE Transactions on Antennas and Propagation, Vol. 71 (2023), Iss. 6 P.5212

    https://doi.org/10.1109/TAP.2023.3268732 [Citations: 4]
  19. Development of a 3D staggered FDTD scheme for solving Maxwell’s equations in Drude medium

    Sheu, Tony W.H. | Wang, Y.C. | Li, J.H.

    Computers & Mathematics with Applications, Vol. 71 (2016), Iss. 6 P.1198

    https://doi.org/10.1016/j.camwa.2016.01.025 [Citations: 6]