Effect of Element Distortion on the Numerical Dispersion of Spectral Element Methods

Effect of Element Distortion on the Numerical Dispersion of Spectral Element Methods

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 4 : pp. 937–958

Abstract

Spectral element methods are well established in the field of wave propagation, in particular because they inherit the flexibility of finite element methods and have low numerical dispersion error. The latter is experimentally acknowledged, but has been theoretically shown only in limited cases, such as Cartesian meshes. It is well known that a finite element mesh can contain distorted elements that generate numerical errors for very large distortions. In the present work, we study the effect of element distortion on the numerical dispersion error and determine the distortion range in which an accurate solution is obtained for a given error tolerance. We also discuss a double-grid calculation of the spectral element matrices that preserves accuracy in deformed geometries.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.071109.080710a

Communications in Computational Physics, Vol. 9 (2011), Iss. 4 : pp. 937–958

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:   

  1. Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes

    Peter, Daniel | Komatitsch, Dimitri | Luo, Yang | Martin, Roland | Le Goff, Nicolas | Casarotti, Emanuele | Le Loher, Pieyre | Magnoni, Federica | Liu, Qinya | Blitz, Céline | Nissen-Meyer, Tarje | Basini, Piero | Tromp, Jeroen

    Geophysical Journal International, Vol. 186 (2011), Iss. 2 P.721

    https://doi.org/10.1111/j.1365-246X.2011.05044.x [Citations: 248]
  2. Energy efficiency vs. performance of the numerical solution of PDEs: An application study on a low-power ARM-based cluster

    Göddeke, Dominik | Komatitsch, Dimitri | Geveler, Markus | Ribbrock, Dirk | Rajovic, Nikola | Puzovic, Nikola | Ramirez, Alex

    Journal of Computational Physics, Vol. 237 (2013), Iss. P.132

    https://doi.org/10.1016/j.jcp.2012.11.031 [Citations: 48]
  3. Numerical and experimental study on wave propagation in granular media using a spectral-element method

    Mizuno, Katsunori | Cristini, Paul | Komatitsch, Dimitri | Capdeville, Yann

    OCEANS 2019 - Marseille, (2019), P.1

    https://doi.org/10.1109/OCEANSE.2019.8867525 [Citations: 0]
  4. A flexible numerical approach for non-destructive ultrasonic testing based on a time-domain spectral-element method: Ultrasonic modeling of Lamb waves in immersed defective structures and of bulk waves in damaged anisotropic materials

    Rosenkrantz, Eric | Bottero, Alexis | Komatitsch, Dimitri | Monteiller, Vadim

    NDT & E International, Vol. 101 (2019), Iss. P.72

    https://doi.org/10.1016/j.ndteint.2018.10.002 [Citations: 19]
  5. Velocity model-based adapted meshes using optimal transport

    dos Santos, Thiago Dias | Olender, Alexandre | Dolci, Daiane Iglesia | Carmo, Bruno Souza

    GEOPHYSICS, Vol. 89 (2024), Iss. 6 P.T289

    https://doi.org/10.1190/geo2023-0581.1 [Citations: 0]
  6. Numerical modeling of seismic wave propagation and ground motion in underground mines

    Wang, Xin | Cai, Ming

    Tunnelling and Underground Space Technology, Vol. 68 (2017), Iss. P.211

    https://doi.org/10.1016/j.tust.2017.05.019 [Citations: 28]
  7. Spectral element approximation of Fredholm integral eigenvalue problems

    Oliveira, Saulo P. | Azevedo, Juarez S.

    Journal of Computational and Applied Mathematics, Vol. 257 (2014), Iss. P.46

    https://doi.org/10.1016/j.cam.2013.08.016 [Citations: 20]
  8. Model order reduction for seismic waveform modelling: inspiration from normal modes

    Hawkins, R | Khalid, M H | Smetana, K | Trampert, J

    Geophysical Journal International, Vol. 234 (2023), Iss. 3 P.2255

    https://doi.org/10.1093/gji/ggad195 [Citations: 3]
  9. Moment fitted cut spectral elements for explicit analysis of guided wave propagation

    Nicoli, Sergio | Agathos, Konstantinos | Chatzi, Eleni

    Computer Methods in Applied Mechanics and Engineering, Vol. 398 (2022), Iss. P.115140

    https://doi.org/10.1016/j.cma.2022.115140 [Citations: 16]
  10. Numerical modeling of zero-offset laboratory data in a strong topographic environment: results for a spectral-element method and a discretized Kirchhoff integral method

    Favretto-Cristini, Nathalie | Tantsereva, Anastasiya | Cristini, Paul | Ursin, Bjørn | Komatitsch, Dimitri | Aizenberg, Arkady M.

    Earthquake Science, Vol. 27 (2014), Iss. 4 P.391

    https://doi.org/10.1007/s11589-014-0061-4 [Citations: 4]
  11. Numerical modeling of mechanical wave propagation

    Seriani, G. | Oliveira, S. P.

    La Rivista del Nuovo Cimento, Vol. 43 (2020), Iss. 9 P.459

    https://doi.org/10.1007/s40766-020-00009-0 [Citations: 10]
  12. Analyzing first symmetric and antisymmetric Lamb wave modes in functionally graded thick plates by using spectral plate elements

    Azizi, N. | Saadatpour, M.M. | Mahzoon, M.

    International Journal of Mechanical Sciences, Vol. 150 (2019), Iss. P.484

    https://doi.org/10.1016/j.ijmecsci.2018.10.030 [Citations: 12]
  13. How to adapt numerical simulation of wave propagation and ultrasonic laboratory experiments to be comparable — A case study for a complex topographic model

    Solymosi, Bence | Favretto-Cristini, Nathalie | Monteiller, Vadim | Komatitsch, Dimitri | Cristini, Paul | Arntsen, Børge | Ursin, Bjørn

    GEOPHYSICS, Vol. 83 (2018), Iss. 4 P.T195

    https://doi.org/10.1190/geo2017-0536.1 [Citations: 5]
  14. Error Analysis of Chebyshev Spectral Element Methods for the Acoustic Wave Equation in Heterogeneous Media

    Oliveira, Saulo Pomponet

    Journal of Theoretical and Computational Acoustics, Vol. 26 (2018), Iss. 03 P.1850035

    https://doi.org/10.1142/S2591728518500354 [Citations: 4]
  15. Some illustrative examples of the use of a spectral-element method in ocean acoustics

    Cristini, Paul | Komatitsch, Dimitri

    The Journal of the Acoustical Society of America, Vol. 131 (2012), Iss. 3 P.EL229

    https://doi.org/10.1121/1.3682459 [Citations: 65]
  16. RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale

    Cupillard, Paul | Delavaud, Elise | Burgos, Gaël | Festa, Geatano | Vilotte, Jean-Pierre | Capdeville, Yann | Montagner, Jean-Paul

    Geophysical Journal International, Vol. 188 (2012), Iss. 3 P.1203

    https://doi.org/10.1111/j.1365-246X.2011.05311.x [Citations: 69]
  17. Stability of an explicit high‐order spectral element method for acoustics in heterogeneous media based on local element stability criteria

    Cottereau, Régis | Sevilla, Ruben

    International Journal for Numerical Methods in Engineering, Vol. 116 (2018), Iss. 4 P.223

    https://doi.org/10.1002/nme.5922 [Citations: 8]
  18. Fluid–solid coupling on a cluster of GPU graphics cards for seismic wave propagation

    Komatitsch, Dimitri

    Comptes Rendus. Mécanique, Vol. 339 (2010), Iss. 2-3 P.125

    https://doi.org/10.1016/j.crme.2010.11.007 [Citations: 41]
  19. Numerical Modeling of Seismic Wave Propagation

    Front Matter

    2012

    https://doi.org/10.1190/1.9781560803089.fm [Citations: 0]
  20. A Method to Estimate Shear Quality Factor of Hard Rocks

    Wang, Xin | Cai, Ming

    Pure and Applied Geophysics, Vol. 174 (2017), Iss. 7 P.2689

    https://doi.org/10.1007/s00024-017-1577-z [Citations: 1]
  21. Improvement of accuracy of the spectral element method for elastic wave computation using modified numerical integration operators

    Hasegawa, Kei | Fuji, Nobuaki | Konishi, Kensuke

    Computer Methods in Applied Mechanics and Engineering, Vol. 342 (2018), Iss. P.200

    https://doi.org/10.1016/j.cma.2018.07.025 [Citations: 2]
  22. Assessment of Risks Induced by Countermining Unexploded Large-Charge Historical Ordnance in a Shallow Water Environment—Part II: Modeling of Seismo-Acoustic Wave Propagation

    Favretto-Cristini, Nathalie | Wang, Fang | Cristini, Paul | Garlan, Thierry | Morio, Olivier | Mercerat, E. Diego | Monteiller, Vadim | Deschamps, Anne | Beucler, Eric

    IEEE Journal of Oceanic Engineering, Vol. 47 (2022), Iss. 2 P.374

    https://doi.org/10.1109/JOE.2021.3111791 [Citations: 8]
  23. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML

    Xie, Zhinan | Komatitsch, Dimitri | Martin, Roland | Matzen, René

    Geophysical Journal International, Vol. 198 (2014), Iss. 3 P.1714

    https://doi.org/10.1093/gji/ggu219 [Citations: 47]
  24. A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model

    Monteiller, Vadim | Chevrot, Sébastien | Komatitsch, Dimitri | Fuji, Nobuaki

    Geophysical Journal International, Vol. 192 (2013), Iss. 1 P.230

    https://doi.org/10.1093/gji/ggs006 [Citations: 75]