On the Connection Between the Spectral Difference Method and the Discontinuous Galerkin Method

On the Connection Between the Spectral Difference Method and the Discontinuous Galerkin Method

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 4 : pp. 1071–1080

Abstract

In this short note we present a derivation of the Spectral Difference Scheme from a Discontinuous Galerkin (DG) discretization of a nonlinear conservation law. This allows interpretation of the Spectral Difference Scheme as a particular discretization under the quadrature-free nodal DG paradigm. Moreover, it enables identification of the key differences between the Spectral Difference Scheme and standard nodal DG schemes.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.090210.040610a

Communications in Computational Physics, Vol. 9 (2011), Iss. 4 : pp. 1071–1080

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:   

  1. Comparison between a priori and a posteriori slope limiters for high-order finite volume schemes

    Palafoutas, Jonathan | Velasco Romero, David A. | Teyssier, Romain

    Journal of Computational Physics, Vol. (2024), Iss. P.113571

    https://doi.org/10.1016/j.jcp.2024.113571 [Citations: 0]
  2. Artificial viscosity-based shock capturing scheme for the Spectral Difference method on simplicial elements

    Messaï, Nadir-Alexandre | Daviller, Guillaume | Boussuge, Jean-François

    Journal of Computational Physics, Vol. 504 (2024), Iss. P.112864

    https://doi.org/10.1016/j.jcp.2024.112864 [Citations: 2]
  3. An arbitrary high-order Spectral Difference method for the induction equation

    Han Veiga, Maria | Velasco-Romero, David A. | Wenger, Quentin | Teyssier, Romain

    Journal of Computational Physics, Vol. 438 (2021), Iss. P.110327

    https://doi.org/10.1016/j.jcp.2021.110327 [Citations: 4]
  4. A stable high-order Spectral Difference method for hyperbolic conservation laws on triangular elements

    Balan, Aravind | May, Georg | Schöberl, Joachim

    Journal of Computational Physics, Vol. 231 (2012), Iss. 5 P.2359

    https://doi.org/10.1016/j.jcp.2011.11.041 [Citations: 34]
  5. An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes

    Dürrwächter, Jakob | Kurz, Marius | Kopper, Patrick | Kempf, Daniel | Munz, Claus-Dieter | Beck, Andrea

    Computers & Fluids, Vol. 217 (2021), Iss. P.104825

    https://doi.org/10.1016/j.compfluid.2020.104825 [Citations: 12]
  6. A compressible high-order unstructured spectral difference code for stratified convection in rotating spherical shells

    Wang, Junfeng | Liang, Chunlei | Miesch, Mark S.

    Journal of Computational Physics, Vol. 290 (2015), Iss. P.90

    https://doi.org/10.1016/j.jcp.2015.02.047 [Citations: 10]
  7. A new high-order spectral difference method for simulating viscous flows on unstructured grids with mixed-element meshes

    Li, Mao | Qiu, Zihua | Liang, Chunlei | Sprague, Michael | Xu, Min | Garris, Charles A.

    Computers & Fluids, Vol. 184 (2019), Iss. P.187

    https://doi.org/10.1016/j.compfluid.2019.03.010 [Citations: 8]
  8. A selective immersed discontinuous Galerkin method for elliptic interface problems

    He, Xiaoming | Lin, Tao | Lin, Yanping

    Mathematical Methods in the Applied Sciences, Vol. 37 (2014), Iss. 7 P.983

    https://doi.org/10.1002/mma.2856 [Citations: 26]
  9. A comparison of computational efficiencies of spectral difference method and correction procedure via reconstruction

    Liang, Chunlei | Cox, Christopher | Plesniak, Michael

    Journal of Computational Physics, Vol. 239 (2013), Iss. P.138

    https://doi.org/10.1016/j.jcp.2013.01.001 [Citations: 38]
  10. A p-adaptive LCP formulation for the compressible Navier–Stokes equations

    Cagnone, J.S. | Vermeire, B.C. | Nadarajah, S.

    Journal of Computational Physics, Vol. 233 (2013), Iss. P.324

    https://doi.org/10.1016/j.jcp.2012.08.053 [Citations: 13]
  11. Handbook of Numerical Methods for Hyperbolic Problems - Basic and Fundamental Issues

    Spectral Volume and Spectral Difference Methods

    Wang, Z.J. | Liu, Y. | Lacor, C. | Azevedo, J.L.F.

    2016

    https://doi.org/10.1016/bs.hna.2016.09.013 [Citations: 2]
  12. A collocated-grid spectral difference method for compressible flows

    Chen, Wenqian | Ju, Yaping | Zhang, Chuhua

    Computers & Fluids, Vol. 196 (2020), Iss. P.104341

    https://doi.org/10.1016/j.compfluid.2019.104341 [Citations: 2]
  13. A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains

    Zhang, Bin | Liang, Chunlei

    Journal of Computational Physics, Vol. 295 (2015), Iss. P.147

    https://doi.org/10.1016/j.jcp.2015.04.006 [Citations: 44]
  14. Hybridizable discontinuous Galerkin methods for second-order elliptic problems: overview, a new result and open problems

    Cockburn, Bernardo

    Japan Journal of Industrial and Applied Mathematics, Vol. 40 (2023), Iss. 3 P.1637

    https://doi.org/10.1007/s13160-023-00603-9 [Citations: 3]
  15. A stable Spectral Difference approach for computations with triangular and hybrid grids up to the 6 order of accuracy

    Veilleux, Adèle | Puigt, Guillaume | Deniau, Hugues | Daviller, Guillaume

    Journal of Computational Physics, Vol. 449 (2022), Iss. P.110774

    https://doi.org/10.1016/j.jcp.2021.110774 [Citations: 12]
  16. A corrected Raviart–Thomas Spectral Difference scheme stable for arbitrary order of accuracy on triangular and tetrahedral meshes

    Messaï, Nadir-Alexandre | Daviller, Guillaume

    Computer Methods in Applied Mechanics and Engineering, Vol. 432 (2024), Iss. P.117413

    https://doi.org/10.1016/j.cma.2024.117413 [Citations: 0]
  17. CONVECTION IN OBLATE SOLAR-TYPE STARS

    Wang, Junfeng | Miesch, Mark S. | Liang, Chunlei

    The Astrophysical Journal, Vol. 830 (2016), Iss. 1 P.45

    https://doi.org/10.3847/0004-637X/830/1/45 [Citations: 7]
  18. Quadrature-Free Implementation of a Discontinuous Galerkin Global Shallow-Water Model via Flux Correction Procedure

    Nair, Ramachandran D.

    Monthly Weather Review, Vol. 143 (2015), Iss. 4 P.1335

    https://doi.org/10.1175/MWR-D-14-00174.1 [Citations: 3]