Mean-Field Model Beyond Boltzmann-Enskog Picture for Dense Gases

Mean-Field Model Beyond Boltzmann-Enskog Picture for Dense Gases

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 5 : pp. 1106–1116

Abstract

This work proposes an extension to Boltzmann BGK equation for dense gases. The present model has an H-theorem and it allows choice of the Prandtl number as an independent parameter. I show that similar to Enskog equation this equation can reproduce dynamics of dense gases.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.301009.240910s

Communications in Computational Physics, Vol. 9 (2011), Iss. 5 : pp. 1106–1116

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:   

  1. Parallel tensor methods for high-dimensional linear PDEs

    Boelens, Arnout M.P. | Venturi, Daniele | Tartakovsky, Daniel M.

    Journal of Computational Physics, Vol. 375 (2018), Iss. P.519

    https://doi.org/10.1016/j.jcp.2018.08.057 [Citations: 19]
  2. Stabilized lattice Boltzmann-Enskog method for compressible flows and its application to one- and two-component fluids in nanochannels

    Melchionna, Simone | Marconi, Umberto Marini Bettolo

    Physical Review E, Vol. 85 (2012), Iss. 3

    https://doi.org/10.1103/PhysRevE.85.036707 [Citations: 7]
  3. THE CONTRIBUTION OF THE BHATNAGAR–GROSS–KROOK MODEL TO THE DEVELOPMENT OF RAREFIED GAS DYNAMICS IN THE EARLY YEARS OF THE SPACE AGE

    NARASIMHA, RODDAM

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 01 P.1340025

    https://doi.org/10.1142/S0129183113400251 [Citations: 1]
  4. Gaseous microflow modeling using the Fokker-Planck equation

    Singh, S. K. | Thantanapally, Chakradhar | Ansumali, Santosh

    Physical Review E, Vol. 94 (2016), Iss. 6

    https://doi.org/10.1103/PhysRevE.94.063307 [Citations: 13]
  5. DIRECT SIMULATION MONTE CARLO FOR DENSE HARD SPHERES

    CHAO, LIU | KWAK, SANG KYU | ANSUMALI, SANTOSH

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 01 P.1340023

    https://doi.org/10.1142/S0129183113400238 [Citations: 2]
  6. Fokker-Planck model of hydrodynamics

    Singh, S. K. | Ansumali, Santosh

    Physical Review E, Vol. 91 (2015), Iss. 3

    https://doi.org/10.1103/PhysRevE.91.033303 [Citations: 20]
  7. Pore-scale study of non-ideal gas dynamics under tight confinement considering rarefaction, denseness and molecular interactions

    Shan, Baochao | Chen, Songze | Guo, Zhaoli | Wang, Peng

    Journal of Natural Gas Science and Engineering, Vol. 90 (2021), Iss. P.103916

    https://doi.org/10.1016/j.jngse.2021.103916 [Citations: 9]
  8. Extended BGK Boltzmann for Dense Gases

    Suryanarayanan, Saikishan | Singh, Shiwani | Ansumali, Santosh

    Communications in Computational Physics, Vol. 13 (2013), Iss. 3 P.629

    https://doi.org/10.4208/cicp.401011.220212s [Citations: 8]
  9. Lattice Boltzmann model for weakly compressible flows

    Kolluru, Praveen Kumar | Atif, Mohammad | Namburi, Manjusha | Ansumali, Santosh

    Physical Review E, Vol. 101 (2020), Iss. 1

    https://doi.org/10.1103/PhysRevE.101.013309 [Citations: 8]
  10. SIMULATING NANOFLUIDS VIA THE WEIGHTED DENSITY LATTICE BOLTZMANN APPROACH

    MELCHIONNA, SIMONE | MARCONI, UMBERTO MARINI BETTOLO

    International Journal of Modern Physics C, Vol. 24 (2013), Iss. 12 P.1340013

    https://doi.org/10.1142/S0129183113400135 [Citations: 0]