Contact Angle Determination in Multicomponent Lattice Boltzmann Simulations

Contact Angle Determination in Multicomponent Lattice Boltzmann Simulations

Year:    2011

Communications in Computational Physics, Vol. 9 (2011), Iss. 5 : pp. 1165–1178

Abstract

Droplets on hydrophobic surfaces are ubiquitous in microfluidic applications and there exists a number of commonly used multicomponent and multiphase lattice Boltzmann schemes to study such systems. In this paper we focus on a popular implementation of a multicomponent model as introduced by Shan and Chen. Here, interactions between different components are implemented as repulsive forces whose strength is determined by model parameters. In this paper we present simulations of a droplet on a hydrophobic surface. We investigate the dependence of the contact angle on the simulation parameters and quantitatively compare different approaches to determine it. Results show that the method is capable of modelling the whole range of contact angles. We find that the a priori determination of the contact angle is depending on the simulation parameters with an uncertainty of 10% to 20%.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.201009.271010s

Communications in Computational Physics, Vol. 9 (2011), Iss. 5 : pp. 1165–1178

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:   

  1. MODELING OF WATER-OIL FLOW IN SHALE POROUS STRUCTURES: EFFECT OF WETTABILITY AND CAPILLARY NUMBERS

    Wang, Yuegang | Zhang, Liaoyuan | Zhang, Zilin | Zhang, Feng | Lu, Mingjing

    Journal of Porous Media, Vol. 28 (2025), Iss. 2 P.65

    https://doi.org/10.1615/JPorMedia.2024053606 [Citations: 0]
  2. Simulation of high-viscosity-ratio multicomponent fluid flow using a pseudopotential model based on the nonorthogonal central-moments lattice Boltzmann method

    Gharibi, Farshad | Ashrafizaadeh, Mahmud

    Physical Review E, Vol. 101 (2020), Iss. 4

    https://doi.org/10.1103/PhysRevE.101.043311 [Citations: 5]
  3. Effect of bubble-induced Marangoni convection on dendritic solidification

    Nabavizadeh, Seyed Amin | Eshraghi, Mohsen | Felicelli, Sergio D. | Tewari, Surendra N. | Grugel, Richard N.

    International Journal of Multiphase Flow, Vol. 116 (2019), Iss. P.137

    https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.018 [Citations: 20]
  4. Effects of Multi-stack Ball Grid Array on Multi-stack Printed Circuit Board

    Mukhtar, M A F M | Abas, A | W S Bahri, W M E I

    IOP Conference Series: Materials Science and Engineering, Vol. 530 (2019), Iss. 1 P.012017

    https://doi.org/10.1088/1757-899X/530/1/012017 [Citations: 0]
  5. Thermo-Mechanics Applications and Engineering Technology

    A Lattice Boltzmann Model for the Simulation of Flows and Heat Transfer at Very High Temperature: A Dynamic Framework of Conversion to Physical Space with Test Cases

    Djebali, Ridha | Abbassi, Mohamed Ammar | Jaouabi, Abdallah

    2018

    https://doi.org/10.1007/978-3-319-70957-4_7 [Citations: 1]
  6. Micro- and nanoscale fluid flow on chemical channels

    Dörfler, Fabian | Rauscher, Markus | Koplik, Joel | Harting, Jens | Dietrich, S.

    Soft Matter, Vol. 8 (2012), Iss. 35 P.9221

    https://doi.org/10.1039/c2sm25747e [Citations: 13]
  7. Formation of bijels stabilized by magnetic ellipsoidal particles in external magnetic fields

    Karthikeyan, Nikhil | Schiller, Ulf D.

    Soft Matter, Vol. 20 (2024), Iss. 45 P.8952

    https://doi.org/10.1039/D4SM00751D [Citations: 0]
  8. Lattice Boltzmann modeling of directional wetting: Comparing simulations to experiments

    Jansen, H. Patrick | Sotthewes, Kai | van Swigchem, Jeroen | Zandvliet, Harold J. W. | Kooij, E. Stefan

    Physical Review E, Vol. 88 (2013), Iss. 1

    https://doi.org/10.1103/PhysRevE.88.013008 [Citations: 35]
  9. Tensorial slip of superhydrophobic channels

    Schmieschek, Sebastian | Belyaev, Aleksey V. | Harting, Jens | Vinogradova, Olga I.

    Physical Review E, Vol. 85 (2012), Iss. 1

    https://doi.org/10.1103/PhysRevE.85.016324 [Citations: 54]
  10. Wetting and pressure gradient performance in a lattice Boltzmann color gradient model

    Sedahmed, M. | Coelho, R. C. V.

    Physics of Fluids, Vol. 36 (2024), Iss. 9

    https://doi.org/10.1063/5.0228835 [Citations: 0]
  11. Method for predicting the wettability of micro-structured surfaces by continuum phase-field modelling

    Provenzano, Marina | Bellussi, Francesco Maria | Morciano, Matteo | Asinari, Pietro | Fasano, Matteo

    MethodsX, Vol. 11 (2023), Iss. P.102458

    https://doi.org/10.1016/j.mex.2023.102458 [Citations: 0]
  12. Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method

    Abas, Aizat | Gan, Z. L. | Ishak, M. H. H. | Abdullah, M. Z. | Khor, Soon Fuat | Pennisi, Marzio Alfio

    PLOS ONE, Vol. 11 (2016), Iss. 7 P.e0159357

    https://doi.org/10.1371/journal.pone.0159357 [Citations: 14]
  13. Benchmark cases for a multi-component Lattice–Boltzmann method in hydrostatic conditions

    Montellà, E.P. | Chareyre, B. | Salager, S. | Gens, A.

    MethodsX, Vol. 7 (2020), Iss. P.101090

    https://doi.org/10.1016/j.mex.2020.101090 [Citations: 4]
  14. Water Vapor Adsorption–Desorption Hysteresis Due to Clustering of Water on Nonporous Surfaces

    Viisanen, Yrjö | Lbadaoui-Darvas, Maria | Alvarez Piedehierro, Ana | Welti, André | Nenes, Athanasios | Laaksonen, Ari

    Langmuir, Vol. (2024), Iss.

    https://doi.org/10.1021/acs.langmuir.4c02950 [Citations: 0]
  15. A droplet actuation technique for a lab-on-chip device using partial wetting surface without external force

    Pravinraj, T. | Patrikar, Rajendra

    Sensors and Actuators A: Physical, Vol. 285 (2019), Iss. P.482

    https://doi.org/10.1016/j.sna.2018.11.039 [Citations: 8]
  16. Dynamic wetting: status and prospective of single particle based experiments and simulations

    Cappelli, S. | Xie, Q. | Harting, J. | de Jong, A.M. | Prins, M.W.J.

    New Biotechnology, Vol. 32 (2015), Iss. 5 P.420

    https://doi.org/10.1016/j.nbt.2015.02.010 [Citations: 18]
  17. Numerical study of the evolution of bubbles during nucleation and droplets during condensation on a surface of variable wettability using the pseudopotential MRT-LBM method

    Channouf, Salaheddine | Jami, Mohammed | Mezrhab, Ahmed

    Numerical Heat Transfer, Part B: Fundamentals, Vol. 85 (2024), Iss. 2 P.131

    https://doi.org/10.1080/10407790.2023.2229012 [Citations: 5]
  18. Understanding wetting behavior in electrode–electrolyte interface formation and its sensitivity to electrode-current collector interaction: a lattice Boltzmann method approach

    Abubaker, Muhammad | Sohn, Chang-Hyun | Ali, Hafiz Muhammad

    Journal of Thermal Analysis and Calorimetry, Vol. 149 (2024), Iss. 11 P.5443

    https://doi.org/10.1007/s10973-024-13140-5 [Citations: 2]
  19. Statistical Rock Physics

    Thermodynamic Algorithms

    Korvin, Gabor

    2024

    https://doi.org/10.1007/978-3-031-46700-4_11 [Citations: 0]
  20. Lattice Boltzmann simulation of drop formation in T-junction microchannel

    Fallah, Keivan | Taeibi Rahni, Mohammad

    Journal of Molecular Liquids, Vol. 240 (2017), Iss. P.723

    https://doi.org/10.1016/j.molliq.2017.05.108 [Citations: 32]
  21. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    Küllmer, Knut | Krämer, Andreas | Joppich, Wolfgang | Reith, Dirk | Foysi, Holger

    Physical Review E, Vol. 97 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.97.023313 [Citations: 8]
  22. A ternary mixture model with dynamic boundary conditions

    Liu, Shuang | Wu, Yue | Zhao, Xueping

    Mathematical Biosciences and Engineering, Vol. 21 (2024), Iss. 2 P.2050

    https://doi.org/10.3934/mbe.2024091 [Citations: 0]
  23. Lattice Boltzmann simulation of droplet deformation and breakup due to collision with obstacles in microchannel

    Heydari Sipey, Milad | Aghajani Delavar, Mojtaba | Sattari, Elham

    Indian Journal of Physics, Vol. 94 (2020), Iss. 11 P.1767

    https://doi.org/10.1007/s12648-019-01622-4 [Citations: 4]
  24. From bijels to Pickering emulsions: A lattice Boltzmann study

    Jansen, Fabian | Harting, Jens

    Physical Review E, Vol. 83 (2011), Iss. 4

    https://doi.org/10.1103/PhysRevE.83.046707 [Citations: 136]
  25. Pore-Scale Experimental and Numerical Study on Permeability Characterization of Abu Dhabi Offshore Carbonate Micromodel

    Li, Hongxia | AlFarisi, Omar | Voort, Bob | Dimas, Clara | Zhang, TieJun

    Day 3 Wed, November 09, 2016, (2016),

    https://doi.org/10.2118/183215-MS [Citations: 1]
  26. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Pravinraj, T. | Patrikar, Rajendra

    Applied Surface Science, Vol. 409 (2017), Iss. P.214

    https://doi.org/10.1016/j.apsusc.2017.02.242 [Citations: 20]
  27. A lattice Boltzmann method for immiscible two-phase Stokes flow with a local collision operator

    Tölke, Jonas | Prisco, Giuseppe De | Mu, Yaoming

    Computers & Mathematics with Applications, Vol. 65 (2013), Iss. 6 P.864

    https://doi.org/10.1016/j.camwa.2012.05.018 [Citations: 23]
  28. Lattice Boltzmann modeling of a gravity-driven sliding droplet under a dynamic wetting regime

    Zhumatay, Nursultan | Kabdenova, Bagdagul | Monaco, Ernesto | Rojas-Solórzano, Luis R.

    European Journal of Mechanics - B/Fluids, Vol. 86 (2021), Iss. P.198

    https://doi.org/10.1016/j.euromechflu.2020.12.008 [Citations: 8]
  29. An improved multicomponent pseudopotential lattice Boltzmann method for immiscible fluid displacement in porous media

    Sedahmed, M. | Coelho, R. C. V. | Warda, H. A.

    Physics of Fluids, Vol. 34 (2022), Iss. 2

    https://doi.org/10.1063/5.0080823 [Citations: 16]
  30. Finite-element lattice Boltzmann simulations of contact line dynamics

    Matin, Rastin | Krzysztof Misztal, Marek | Hernández-García, Anier | Mathiesen, Joachim

    Physical Review E, Vol. 97 (2018), Iss. 1

    https://doi.org/10.1103/PhysRevE.97.013307 [Citations: 3]
  31. The LBPM software package for simulating multiphase flow on digital images of porous rocks

    McClure, James E. | Li, Zhe | Berrill, Mark | Ramstad, Thomas

    Computational Geosciences, Vol. 25 (2021), Iss. 3 P.871

    https://doi.org/10.1007/s10596-020-10028-9 [Citations: 44]
  32. The effect of benzalkonium chloride additions to AH Plus sealer. Antimicrobial, physical and chemical properties

    Arias-Moliz, M.T. | Ruiz-Linares, M. | Cassar, G. | Ferrer-Luque, C.M. | Baca, P. | Ordinola-Zapata, R. | Camilleri, J.

    Journal of Dentistry, Vol. 43 (2015), Iss. 7 P.846

    https://doi.org/10.1016/j.jdent.2015.05.003 [Citations: 26]
  33. Investigating Plasma Jets Behavior using Axisymmetric Lattice Boltzmann Model under Temperature Dependent Viscosity

    Djebali, Ridha

    Communications in Computational Physics, Vol. 15 (2014), Iss. 3 P.677

    https://doi.org/10.4208/cicp.160313.290813a [Citations: 5]
  34. Self-folding of two-dimensional thin templates into pyramidal microstructures by a liquid drop: a numerical model

    Lecrivain, Gregory | Lorenz, Pierre | Zimmer, Klaus | Hampel, Uwe

    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 480 (2024), Iss. 2299

    https://doi.org/10.1098/rspa.2024.0277 [Citations: 0]
  35. Effects of nanoparticles and surfactant on droplets in shear flow

    Frijters, Stefan | Günther, Florian | Harting, Jens

    Soft Matter, Vol. 8 (2012), Iss. 24 P.6542

    https://doi.org/10.1039/c2sm25209k [Citations: 85]
  36. Numerical Simulation of 3D Liquid–Gas Distribution in Porous Media by a Two-Phase TRT Lattice Boltzmann Method

    Genty, Alain | Pot, Valérie

    Transport in Porous Media, Vol. 96 (2013), Iss. 2 P.271

    https://doi.org/10.1007/s11242-012-0087-9 [Citations: 35]
  37. Flow past superhydrophobic surfaces with cosine variation in local slip length

    Asmolov, Evgeny S. | Schmieschek, Sebastian | Harting, Jens | Vinogradova, Olga I.

    Physical Review E, Vol. 87 (2013), Iss. 2

    https://doi.org/10.1103/PhysRevE.87.023005 [Citations: 27]
  38. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Yagub, A. | Farhat, H. | Kondaraju, S. | Singh, T.

    Journal of Computational Physics, Vol. 301 (2015), Iss. P.402

    https://doi.org/10.1016/j.jcp.2015.08.040 [Citations: 17]
  39. Lattice Boltzmann simulation of the spreading behavior of a droplet impacting on inclined solid wall

    Chen, Wanyu | Yang, Fan | Yan, Yonghua | Guo, Xueyan | Dai, Ren | Cai, Xiaoshu

    Journal of Mechanical Science and Technology, Vol. 32 (2018), Iss. 6 P.2637

    https://doi.org/10.1007/s12206-018-0521-1 [Citations: 10]
  40. Wetting performance analysis of porosity distribution in NMC111 layered electrodes in lithium-ion batteries using the Lattice Boltzmann Method

    Abubaker, Muhammad | Sohn, Chang-Hyun | Ali, Hafiz Muhammad

    Energy Reports, Vol. 12 (2024), Iss. P.2548

    https://doi.org/10.1016/j.egyr.2024.07.020 [Citations: 0]
  41. Liquid Seepage in Coal Granular-Type Porous Medium

    Wang, Kang | Tan, Wei | Zhu, Yukun | Liu, Liyan

    ACS Omega, Vol. 5 (2020), Iss. 32 P.20321

    https://doi.org/10.1021/acsomega.0c02241 [Citations: 3]
  42. A designable surface via the micro-molding process

    Wang, Zhenyu | Xu, Lijun | Wu, Xuegen | Chen, Jing

    Microsystems & Nanoengineering, Vol. 4 (2018), Iss. 1

    https://doi.org/10.1038/micronano.2017.99 [Citations: 8]
  43. Study of fluid displacement in three-dimensional porous media with an improved multicomponent pseudopotential lattice Boltzmann method

    Sedahmed, M. | Coelho, R. C. V. | Araújo, N. A. M. | Wahba, E. M. | Warda, H. A.

    Physics of Fluids, Vol. 34 (2022), Iss. 10

    https://doi.org/10.1063/5.0107361 [Citations: 12]
  44. Applications of Lattice Boltzmann in method in multi-component and multi-phase flow: A review

    Sahu, Abhishek | Bhowmick, Shubhankar

    PROCEEDINGS OF ADVANCED MATERIAL, ENGINEERING & TECHNOLOGY, (2020), P.030007

    https://doi.org/10.1063/5.0024322 [Citations: 2]
  45. A review of crude oil emulsification and multiphase flows in chemical flooding

    Zhou, Yazhou | Yin, Daiyin | Li, Yuanting | He, Jingang | Zhang, Chengli

    Energy Science & Engineering, Vol. 11 (2023), Iss. 4 P.1484

    https://doi.org/10.1002/ese3.1351 [Citations: 10]
  46. The dynamics of wettability driven droplets in smooth and corrugated microchannels

    Esmaili, E | Moosavi, A | Mazloomi, A

    Journal of Statistical Mechanics: Theory and Experiment, Vol. 2012 (2012), Iss. 10 P.P10005

    https://doi.org/10.1088/1742-5468/2012/10/P10005 [Citations: 7]
  47. Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails

    Wang, Fang | Schiller, Ulf D.

    Soft Matter, Vol. 17 (2021), Iss. 22 P.5486

    https://doi.org/10.1039/D1SM00126D [Citations: 10]
  48. Simulation of CO2 dissolution reactions in saline aquifers using lattice Boltzmann method

    Xie, Qiuheng | Wang, Wendong | Bakhshian, Sahar | Wang, Han | Guo, Xincheng | Su, Yuliang

    Gas Science and Engineering, Vol. 125 (2024), Iss. P.205284

    https://doi.org/10.1016/j.jgsce.2024.205284 [Citations: 2]
  49. Multiphase lattice Boltzmann simulations for porous media applications

    Liu, Haihu | Kang, Qinjun | Leonardi, Christopher R. | Schmieschek, Sebastian | Narváez, Ariel | Jones, Bruce D. | Williams, John R. | Valocchi, Albert J. | Harting, Jens

    Computational Geosciences, Vol. 20 (2016), Iss. 4 P.777

    https://doi.org/10.1007/s10596-015-9542-3 [Citations: 325]
  50. How water wets and self-hydrophilizes nanopatterns of physisorbed hydrocarbons

    Díaz, Diego | Nickel, Ole | Moraga, Nicolás | Catalán, Rodrigo E. | Retamal, María José | Zelada, Hugo | Cisternas, Marcelo | Meißner, Robert | Huber, Patrick | Corrales, Tomas P. | Volkmann, Ulrich G.

    Journal of Colloid and Interface Science, Vol. 606 (2022), Iss. P.57

    https://doi.org/10.1016/j.jcis.2021.07.121 [Citations: 3]
  51. VLSI Design and Test

    Splitting and Transport of a Droplet with No External Actuation Force for Lab on Chip Devices

    Pravinraj, T. | Patrikar, Rajendra

    2017

    https://doi.org/10.1007/978-981-10-7470-7_66 [Citations: 3]