All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations

All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 1 : pp. 1–31

Abstract

An all speed scheme for the Isentropic Euler equations is presented in this paper. When the Mach number tends to zero, the compressible Euler equations converge to their incompressible counterpart, in which the density becomes a constant. Increasing approximation errors and severe stability constraints are the main difficulty in the low Mach regime. The key idea of our all speed scheme is the special semi-implicit time discretization, in which the low Mach number stiff term is divided into two parts, one being treated explicitly and the other one implicitly. Moreover, the flux of the density equation is also treated implicitly and an elliptic type equation is derived to obtain the density. In this way, the correct limit can be captured without requesting the mesh size and time step to be smaller than the Mach number. Compared with previous semi-implicit methods [11,13,29], firstly, nonphysical oscillations can be suppressed by choosing proper parameter, besides, only a linear elliptic equation needs to be solved implicitly which reduces much computational cost. We develop this semi-implicit time discretization in the framework of a first order Local Lax-Friedrichs (or Rusanov) scheme and numerical tests are displayed to demonstrate its performances.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.210709.210610a

Communications in Computational Physics, Vol. 10 (2011), Iss. 1 : pp. 1–31

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    31

Keywords:   

  1. An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows

    Grenier, N. | Vila, J.-P. | Villedieu, P.

    Journal of Computational Physics, Vol. 252 (2013), Iss. P.1

    https://doi.org/10.1016/j.jcp.2013.06.008 [Citations: 27]
  2. High order semi-implicit weighted compact nonlinear scheme for the full compressible Euler system at all Mach numbers

    Jiang, Yan-Qun | Zhou, Shu-Guang | Hu, Ying-Gang | Zhang, Xu

    Computers & Mathematics with Applications, Vol. 109 (2022), Iss. P.125

    https://doi.org/10.1016/j.camwa.2022.01.020 [Citations: 2]
  3. Convergence of a finite volume scheme for the compressible Navier–Stokes system

    Feireisl, Eduard | Lukáčová-Medvid’ová, Mária | Mizerová, Hana | She, Bangwei

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 6 P.1957

    https://doi.org/10.1051/m2an/2019043 [Citations: 21]
  4. A Mach-sensitive implicit–explicit scheme adapted to compressible multi-scale flows

    Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.

    Journal of Computational and Applied Mathematics, Vol. 340 (2018), Iss. P.122

    https://doi.org/10.1016/j.cam.2018.02.019 [Citations: 10]
  5. An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations

    Boscheri, Walter | Dimarco, Giacomo | Tavelli, Maurizio

    Computer Methods in Applied Mechanics and Engineering, Vol. 374 (2021), Iss. P.113602

    https://doi.org/10.1016/j.cma.2020.113602 [Citations: 27]
  6. Asymptotic-Preserving Scheme for the Resolution of Evolution Equations with Stiff Transport Terms

    Fedele, Baptiste | Negulescu, Claudia | Possanner, Stefan

    Multiscale Modeling & Simulation, Vol. 17 (2019), Iss. 1 P.307

    https://doi.org/10.1137/18M1175732 [Citations: 3]
  7. Pedestrian and Evacuation Dynamics 2012

    A Macroscopic Model for Bidirectional Pedestrian Flow

    Appert-Rolland, Cécile | Degond, Pierre | Motsch, Sébastien

    2014

    https://doi.org/10.1007/978-3-319-02447-9_48 [Citations: 2]
  8. A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system

    Boscarino, Sebastiano | Qiu, Jing-Mei | Russo, Giovanni | Xiong, Tao

    Journal of Computational Physics, Vol. 392 (2019), Iss. P.594

    https://doi.org/10.1016/j.jcp.2019.04.057 [Citations: 34]
  9. Numerical simulation of a compressible two-layer model: A first attempt with an implicit–explicit splitting scheme

    Demay, Charles | Bourdarias, Christian | de Meux, Benoît de Laage | Gerbi, Stéphane | Hérard, Jean-Marc

    Journal of Computational and Applied Mathematics, Vol. 346 (2019), Iss. P.357

    https://doi.org/10.1016/j.cam.2018.06.027 [Citations: 3]
  10. Asymptotic Transition from Kinetic to Adiabatic Electrons along Magnetic Field Lines

    Cecco, Alexandra De | Deluzet, Fabrice | Negulescu, Claudia | Possanner, Stefan

    Multiscale Modeling & Simulation, Vol. 15 (2017), Iss. 1 P.309

    https://doi.org/10.1137/15M1043686 [Citations: 5]
  11. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    On the Behaviour of Upwind Schemes in the Low Mach Number Limit

    Guillard, H. | Nkonga, B.

    2017

    https://doi.org/10.1016/bs.hna.2016.09.002 [Citations: 14]
  12. UCNS3D: An open-source high-order finite-volume unstructured CFD solver

    Antoniadis, Antonis F. | Drikakis, Dimitris | Farmakis, Pericles S. | Fu, Lin | Kokkinakis, Ioannis | Nogueira, Xesús | Silva, Paulo A.S.F. | Skote, Martin | Titarev, Vladimir | Tsoutsanis, Panagiotis

    Computer Physics Communications, Vol. 279 (2022), Iss. P.108453

    https://doi.org/10.1016/j.cpc.2022.108453 [Citations: 28]
  13. An explicitness-preserving IMEX-split multiderivative method

    Theodosiou, Eleni | Schütz, Jochen | Seal, David

    Computers & Mathematics with Applications, Vol. 158 (2024), Iss. P.139

    https://doi.org/10.1016/j.camwa.2023.12.040 [Citations: 1]
  14. A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows

    Bermúdez, A. | Busto, S. | Dumbser, M. | Ferrín, J.L. | Saavedra, L. | Vázquez-Cendón, M.E.

    Journal of Computational Physics, Vol. 421 (2020), Iss. P.109743

    https://doi.org/10.1016/j.jcp.2020.109743 [Citations: 42]
  15. A hybrid AUSM scheme (HAUS) for multi-phase flows with all Mach numbers

    Yoo, Young-Lin | Sung, Hong-Gye

    Computers & Fluids, Vol. 227 (2021), Iss. P.105050

    https://doi.org/10.1016/j.compfluid.2021.105050 [Citations: 3]
  16. Flowfield dependent variation method

    Girgis, Bassem R | Rani, Sarma L | Frendi, Abdelkader

    International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 26 (2016), Iss. 5 P.1486

    https://doi.org/10.1108/HFF-04-2015-0137 [Citations: 1]
  17. On the Construction of Conservative Semi-Lagrangian IMEX Advection Schemes for Multiscale Time Dependent PDEs

    Boscheri, Walter | Tavelli, Maurizio | Pareschi, Lorenzo

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 3

    https://doi.org/10.1007/s10915-022-01768-0 [Citations: 3]
  18. Numerical Approximation of Hyperbolic Systems of Conservation Laws

    The Case of Multidimensional Systems

    Godlewski, Edwige | Raviart, Pierre-Arnaud

    2021

    https://doi.org/10.1007/978-1-0716-1344-3_5 [Citations: 0]
  19. The barely implicit correction algorithm for low-Mach-Number flows

    Zhang, Xiao | Chung, Joseph D. | Kaplan, Carolyn R. | Oran, Elaine S.

    Computers & Fluids, Vol. 175 (2018), Iss. P.230

    https://doi.org/10.1016/j.compfluid.2018.08.019 [Citations: 13]
  20. A semi implicit compressible solver for two-phase flows of real fluids

    Urbano, A. | Bibal, M. | Tanguy, S.

    Journal of Computational Physics, Vol. 456 (2022), Iss. P.111034

    https://doi.org/10.1016/j.jcp.2022.111034 [Citations: 13]
  21. A pressure‐based method for weakly compressible two‐phase flows under a Baer–Nunziato type model with generic equations of state and pressure and velocity disequilibrium

    Re, Barbara | Abgrall, Rémi

    International Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 8 P.1183

    https://doi.org/10.1002/fld.5087 [Citations: 20]
  22. An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit

    Arun, K. R. | Ghorai, Rahuldev | Kar, Mainak

    Journal of Scientific Computing, Vol. 97 (2023), Iss. 3

    https://doi.org/10.1007/s10915-023-02389-x [Citations: 2]
  23. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

    Asymptotic Preserving Property of a Semi-implicit Method

    Zhang, Lei | Ghidaglia, Jean-Michel | Kumbaro, Anela

    2017

    https://doi.org/10.1007/978-3-319-57394-6_17 [Citations: 0]
  24. A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Shallow Water Equations Over Irregular Bottom Topography

    Liu, Xin

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 5 P.B1136

    https://doi.org/10.1137/19M1262590 [Citations: 5]
  25. All-Speed Numerical Methods for the Euler Equations via a Sequential Explicit Time Integration

    Barsukow, Wasilij

    Journal of Scientific Computing, Vol. 95 (2023), Iss. 2

    https://doi.org/10.1007/s10915-023-02152-2 [Citations: 2]
  26. Two-way multi-lane traffic model for pedestrians in corridors

    Appert-Rolland, Cécile | Degond, Pierre | Motsch, Sébastien

    Networks & Heterogeneous Media, Vol. 6 (2011), Iss. 3 P.351

    https://doi.org/10.3934/nhm.2011.6.351 [Citations: 44]
  27. A low-diffusion self-adaptive flux-vector splitting approach for compressible flows

    Iampietro, D. | Daude, F. | Galon, P.

    Computers & Fluids, Vol. 206 (2020), Iss. P.104586

    https://doi.org/10.1016/j.compfluid.2020.104586 [Citations: 4]
  28. An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds

    Modesti, Davide | Pirozzoli, Sergio

    Journal of Scientific Computing, Vol. 75 (2018), Iss. 1 P.308

    https://doi.org/10.1007/s10915-017-0534-4 [Citations: 16]
  29. Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system

    Arun, K.R. | Das Gupta, A.J. | Samantaray, S.

    Applied Mathematics and Computation, Vol. 411 (2021), Iss. P.126469

    https://doi.org/10.1016/j.amc.2021.126469 [Citations: 0]
  30. Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

    Bispen, Georgij | Lukáčová-Medvid'ová, Mária | Yelash, Leonid

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.222

    https://doi.org/10.1016/j.jcp.2017.01.020 [Citations: 51]
  31. Asymptotic-preserving schemes for multiscale physical problems

    Jin, Shi

    Acta Numerica, Vol. 31 (2022), Iss. P.415

    https://doi.org/10.1017/S0962492922000010 [Citations: 30]
  32. An implicit-explicit solver for a two-fluid single-temperature model

    Lukáčová-Medvid'ová, Mária | Peshkov, Ilya | Thomann, Andrea

    Journal of Computational Physics, Vol. 498 (2024), Iss. P.112696

    https://doi.org/10.1016/j.jcp.2023.112696 [Citations: 2]
  33. Microscopically implicit–macroscopically explicit schemes for the BGK equation

    Pieraccini, Sandra | Puppo, Gabriella

    Journal of Computational Physics, Vol. 231 (2012), Iss. 2 P.299

    https://doi.org/10.1016/j.jcp.2011.08.027 [Citations: 16]
  34. Second order all speed method for the isentropic Euler equations

    Tang, Min

    Kinetic & Related Models, Vol. 5 (2012), Iss. 1 P.155

    https://doi.org/10.3934/krm.2012.5.155 [Citations: 18]
  35. Quinpi: Integrating Conservation Laws with CWENO Implicit Methods

    Puppo, G. | Semplice, M. | Visconti, G.

    Communications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 1 P.343

    https://doi.org/10.1007/s42967-021-00171-0 [Citations: 7]
  36. High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers

    Boscheri, Walter | Pareschi, Lorenzo

    Journal of Computational Physics, Vol. 434 (2021), Iss. P.110206

    https://doi.org/10.1016/j.jcp.2021.110206 [Citations: 48]
  37. Numerical Staggered Schemes for the Free-Congested Navier--Stokes Equations

    Perrin, Charlotte | Saleh, Khaled

    SIAM Journal on Numerical Analysis, Vol. 60 (2022), Iss. 4 P.1824

    https://doi.org/10.1137/21M1436488 [Citations: 3]
  38. An asymptotic preserving semi-implicit multiderivative solver

    Schütz, Jochen | Seal, David C.

    Applied Numerical Mathematics, Vol. 160 (2021), Iss. P.84

    https://doi.org/10.1016/j.apnum.2020.09.004 [Citations: 10]
  39. IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows

    Bispen, Georgij | Arun, K. R. | Lukáčová-Medvid’ová, Mária | Noelle, Sebastian

    Communications in Computational Physics, Vol. 16 (2014), Iss. 2 P.307

    https://doi.org/10.4208/cicp.040413.160114a [Citations: 36]
  40. Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime

    Feireisl, Eduard | Lukáčová-Medviďová, Mária | Nečasová, Šárka | Novotný, Antonín | She, Bangwei

    Multiscale Modeling & Simulation, Vol. 16 (2018), Iss. 1 P.150

    https://doi.org/10.1137/16M1094233 [Citations: 17]
  41. Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit

    Dimarco, Giacomo | Loubère, Raphaël | Vignal, Marie-Hélène

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 5 P.A2099

    https://doi.org/10.1137/16M1069274 [Citations: 43]
  42. A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations

    Boscheri, Walter | Dimarco, Giacomo | Loubère, Raphaël | Tavelli, Maurizio | Vignal, Marie-Hélène

    Journal of Computational Physics, Vol. 415 (2020), Iss. P.109486

    https://doi.org/10.1016/j.jcp.2020.109486 [Citations: 34]
  43. An Asymptotic Preserving Method for Linear Systems of Balance Laws Based on Galerkin’s Method

    Schütz, Jochen

    Journal of Scientific Computing, Vol. 60 (2014), Iss. 2 P.438

    https://doi.org/10.1007/s10915-013-9801-1 [Citations: 3]
  44. A New Stable Splitting for the Isentropic Euler Equations

    Kaiser, Klaus | Schütz, Jochen | Schöbel, Ruth | Noelle, Sebastian

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 3 P.1390

    https://doi.org/10.1007/s10915-016-0286-6 [Citations: 17]
  45. An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations

    Busto, S. | Dumbser, M. | Río-Martín, L.

    Applied Mathematics and Computation, Vol. 437 (2023), Iss. P.127539

    https://doi.org/10.1016/j.amc.2022.127539 [Citations: 4]
  46. High order semi-implicit schemes for viscous compressible flows in 3D

    Boscheri, Walter | Tavelli, Maurizio

    Applied Mathematics and Computation, Vol. 434 (2022), Iss. P.127457

    https://doi.org/10.1016/j.amc.2022.127457 [Citations: 5]
  47. TVD-MOOD schemes based on implicit-explicit time integration

    Michel-Dansac, Victor | Thomann, Andrea

    Applied Mathematics and Computation, Vol. 433 (2022), Iss. P.127397

    https://doi.org/10.1016/j.amc.2022.127397 [Citations: 2]
  48. Steady low Mach number flows: Identification of the spurious mode and filtering method

    Jung, Jonathan | Perrier, Vincent

    Journal of Computational Physics, Vol. 468 (2022), Iss. P.111462

    https://doi.org/10.1016/j.jcp.2022.111462 [Citations: 4]
  49. High Order Semi-implicit WENO Schemes for All-Mach Full Euler System of Gas Dynamics

    Boscarino, Sebastiano | Qiu, Jingmei | Russo, Giovanni | Xiong, Tao

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 2 P.B368

    https://doi.org/10.1137/21M1424433 [Citations: 17]
  50. An entropy satisfying two-speed relaxation system for the barotropic Euler equations: application to the numerical approximation of low Mach number flows

    Bouchut, François | Chalons, Christophe | Guisset, Sébastien

    Numerische Mathematik, Vol. 145 (2020), Iss. 1 P.35

    https://doi.org/10.1007/s00211-020-01111-5 [Citations: 6]
  51. Numerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit

    Degond, P. | Liu, H. | Savelief, D. | Vignal, M.-H.

    Journal of Scientific Computing, Vol. 51 (2012), Iss. 1 P.59

    https://doi.org/10.1007/s10915-011-9495-1 [Citations: 14]
  52. Efficient high-order discontinuous Galerkin computations of low Mach number flows

    Zeifang, Jonas | Kaiser, Klaus | Beck, Andrea | Schütz, Jochen | Munz, Claus-Dieter

    Communications in Applied Mathematics and Computational Science, Vol. 13 (2018), Iss. 2 P.243

    https://doi.org/10.2140/camcos.2018.13.243 [Citations: 11]
  53. A Drift-Asymptotic scheme for a fluid description of plasmas in strong magnetic fields

    Deluzet, Fabrice | Ottaviani, Maurizio | Possanner, Stefan

    Computer Physics Communications, Vol. 219 (2017), Iss. P.164

    https://doi.org/10.1016/j.cpc.2017.05.018 [Citations: 2]
  54. A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics

    Barsukow, Wasilij | Edelmann, Philipp V. F. | Klingenberg, Christian | Miczek, Fabian | Röpke, Friedrich K.

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.623

    https://doi.org/10.1007/s10915-017-0372-4 [Citations: 26]
  55. A low Mach correction able to deal with low Mach acoustics

    Bruel, Pascal | Delmas, Simon | Jung, Jonathan | Perrier, Vincent

    Journal of Computational Physics, Vol. 378 (2019), Iss. P.723

    https://doi.org/10.1016/j.jcp.2018.11.020 [Citations: 14]
  56. Theory, Numerics and Applications of Hyperbolic Problems II

    Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numerics

    Zakerzadeh, Hamed

    2018

    https://doi.org/10.1007/978-3-319-91548-7_50 [Citations: 0]
  57. Flux Splitting for Stiff Equations: A Notion on Stability

    Schütz, Jochen | Noelle, Sebastian

    Journal of Scientific Computing, Vol. 64 (2015), Iss. 2 P.522

    https://doi.org/10.1007/s10915-014-9942-x [Citations: 12]
  58. Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime

    Badsi, Mehdi

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 2 P.701

    https://doi.org/10.1051/m2an/2018070 [Citations: 1]
  59. Shear-induced migration in concentrated suspensions: Particle mass conservation, contact pressure and jamming

    Ozenda, Olivier | Saramito, Pierre | Chambon, Guillaume

    Journal of Non-Newtonian Fluid Mechanics, Vol. 304 (2022), Iss. P.104805

    https://doi.org/10.1016/j.jnnfm.2022.104805 [Citations: 3]
  60. Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model

    Pelanti, Marica

    Applied Mathematics and Computation, Vol. 310 (2017), Iss. P.112

    https://doi.org/10.1016/j.amc.2017.04.014 [Citations: 16]
  61. Droplet Interactions and Spray Processes

    An Investigation of Different Splitting Techniques for the Isentropic Euler Equations

    Zeifang, Jonas | Kaiser, Klaus | Schütz, Jochen | Massa, Francesco Carlo | Beck, Andrea

    2020

    https://doi.org/10.1007/978-3-030-33338-6_4 [Citations: 1]
  62. A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics

    Noelle, S. | Bispen, G. | Arun, K. R. | Lukáčová-Medviďová, M. | Munz, C.-D.

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 6 P.B989

    https://doi.org/10.1137/120895627 [Citations: 63]
  63. Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations

    Arun, K. R. | Samantaray, S.

    Journal of Scientific Computing, Vol. 82 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01138-8 [Citations: 10]
  64. An accurate multi-regime SPH scheme for barotropic flows

    Collé, A. | Limido, J. | Vila, J.-P.

    Journal of Computational Physics, Vol. 388 (2019), Iss. P.561

    https://doi.org/10.1016/j.jcp.2019.03.028 [Citations: 5]
  65. Phase Appearance or Disappearance in Two-Phase Flows

    Cordier, Floraine | Degond, Pierre | Kumbaro, Anela

    Journal of Scientific Computing, Vol. 58 (2014), Iss. 1 P.115

    https://doi.org/10.1007/s10915-013-9725-9 [Citations: 23]
  66. A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method

    Zeifang, Jonas | Beck, Andrea

    Communications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 2 P.722

    https://doi.org/10.1007/s42967-021-00137-2 [Citations: 1]
  67. Asymptotic-Preserving methods and multiscale models for plasma physics

    Degond, Pierre | Deluzet, Fabrice

    Journal of Computational Physics, Vol. 336 (2017), Iss. P.429

    https://doi.org/10.1016/j.jcp.2017.02.009 [Citations: 37]
  68. A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes

    Busto, S. | Río-Martín, L. | Vázquez-Cendón, M.E. | Dumbser, M.

    Applied Mathematics and Computation, Vol. 402 (2021), Iss. P.126117

    https://doi.org/10.1016/j.amc.2021.126117 [Citations: 12]
  69. A new stable splitting for singularly perturbed ODEs

    Schütz, Jochen | Kaiser, Klaus

    Applied Numerical Mathematics, Vol. 107 (2016), Iss. P.18

    https://doi.org/10.1016/j.apnum.2016.04.004 [Citations: 10]
  70. A time‐staggered second order conservative time scheme for variable density flow

    Amino, Hector | Flageul, Cédric | Benhamadouche, Sofiane | Tiselj, Iztok | Carissimo, Bertrand | Ferrand, Martin

    International Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 12 P.1964

    https://doi.org/10.1002/fld.5116 [Citations: 1]
  71. MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver

    Fan, Duoming | Nonaka, Andrew | Almgren, Ann S. | Harpole, Alice | Zingale, Michael

    The Astrophysical Journal, Vol. 887 (2019), Iss. 2 P.212

    https://doi.org/10.3847/1538-4357/ab4f75 [Citations: 15]
  72. High order all-speed semi-implicit weighted compact nonlinear scheme for the isentropic Navier–Stokes equations

    Jiang, Yan-Qun | Zhou, Shu-Guang | Zhang, Xu | Hu, Ying-Gang

    Journal of Computational and Applied Mathematics, Vol. 411 (2022), Iss. P.114272

    https://doi.org/10.1016/j.cam.2022.114272 [Citations: 3]
  73. An Accurate SPH Scheme for Dynamic Fragmentation modelling

    Collé, Anthony | Limido, Jérôme | Vila, Jean-Paul | Buzaud, E. | Cosculluela, A. | Couque, H. | Cadoni, E.

    EPJ Web of Conferences, Vol. 183 (2018), Iss. P.01030

    https://doi.org/10.1051/epjconf/201818301030 [Citations: 7]
  74. Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension

    Zakerzadeh, Hamed

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.893

    https://doi.org/10.1051/m2an/2019005 [Citations: 2]
  75. Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime

    Dimarco, Giacomo | Loubère, Raphaël | Michel-Dansac, Victor | Vignal, Marie-Hélène

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.178

    https://doi.org/10.1016/j.jcp.2018.06.022 [Citations: 26]
  76. High order well-balanced asymptotic preserving IMEX RKDG schemes for the two-dimensional nonlinear shallow water equations

    Xie, Xian | Dong, Haiyun | Li, Maojun

    Journal of Computational Physics, Vol. 510 (2024), Iss. P.113092

    https://doi.org/10.1016/j.jcp.2024.113092 [Citations: 0]
  77. A Mach-sensitive splitting approach for Euler-like systems

    Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 1 P.207

    https://doi.org/10.1051/m2an/2017063 [Citations: 9]
  78. Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity

    Dellacherie, Stéphane | Jung, Jonathan | Omnes, Pascal

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 3 P.1199

    https://doi.org/10.1051/m2an/2021016 [Citations: 3]
  79. An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces

    Liu, Xin | Chertock, Alina | Kurganov, Alexander

    Journal of Computational Physics, Vol. 391 (2019), Iss. P.259

    https://doi.org/10.1016/j.jcp.2019.04.035 [Citations: 15]
  80. Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems

    A Conservative a-Posteriori Time-Limiting Procedure in Quinpi Schemes

    Visconti, Giuseppe | Tozza, Silvia | Semplice, Matteo | Puppo, Gabriella

    2023

    https://doi.org/10.1007/978-3-031-29875-2_9 [Citations: 0]
  81. A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Rotating Shallow Water Equations with Nonflat Bottom Topography

    Kurganov, Alexander | Liu, Yongle | Lukáčová-Medviďová, Mária

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 3 P.A1655

    https://doi.org/10.1137/21M141573X [Citations: 4]
  82. An asymptotic preserving and energy stable scheme for the Euler-Poisson system in the quasineutral limit

    Arun, K.R. | Ghorai, Rahuldev | Kar, Mainak

    Applied Numerical Mathematics, Vol. 198 (2024), Iss. P.375

    https://doi.org/10.1016/j.apnum.2024.01.018 [Citations: 0]
  83. High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers

    Huang, Guanlan | Xing, Yulong | Xiong, Tao

    Journal of Computational Physics, Vol. 463 (2022), Iss. P.111255

    https://doi.org/10.1016/j.jcp.2022.111255 [Citations: 13]
  84. Pedestrian models with congestion effects

    Aceves-Sánchez, Pedro | Bailo, Rafael | Degond, Pierre | Mercier, Zoé

    Mathematical Models and Methods in Applied Sciences, Vol. 34 (2024), Iss. 06 P.1001

    https://doi.org/10.1142/S0218202524400050 [Citations: 2]
  85. High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler–Poisson System in the Quasineutral Limit

    Arun, K. R. | Crouseilles, N. | Samantaray, S.

    Journal of Scientific Computing, Vol. 100 (2024), Iss. 1

    https://doi.org/10.1007/s10915-024-02577-3 [Citations: 0]
  86. An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations

    Haack, Jeffrey | Jin, Shi | Liu, Jian‐Guo

    Communications in Computational Physics, Vol. 12 (2012), Iss. 4 P.955

    https://doi.org/10.4208/cicp.250910.131011a [Citations: 87]
  87. Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension

    Hošek, Radim | She, Bangwei

    Journal of Numerical Mathematics, Vol. 26 (2018), Iss. 3 P.111

    https://doi.org/10.1515/jnma-2017-0010 [Citations: 17]
  88. Asymptotic problems and numerical schemes for traffic flows with unilateral constraints describing the formation of jams

    Berthelin, Florent | Goudon, Thierry | Polizzi, Bastien | Ribot, Magali

    Networks & Heterogeneous Media, Vol. 12 (2017), Iss. 4 P.591

    https://doi.org/10.3934/nhm.2017024 [Citations: 5]
  89. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems

    Comparison of Cell-Centered and Staggered Pressure-Correction Schemes for All-Mach Flows

    Therme, Nicolas | Zaza, Chady

    2014

    https://doi.org/10.1007/978-3-319-05591-6_99 [Citations: 0]
  90. Numerical simulations of the Euler system with congestion constraint

    Degond, Pierre | Hua, Jiale | Navoret, Laurent

    Journal of Computational Physics, Vol. 230 (2011), Iss. 22 P.8057

    https://doi.org/10.1016/j.jcp.2011.07.010 [Citations: 33]
  91. Recasting an operator splitting solver into a standard finite volume flux-based algorithm. The case of a Lagrange-projection-type method for gas dynamics

    Bourgeois, Rémi | Tremblin, Pascal | Kokh, Samuel | Padioleau, Thomas

    Journal of Computational Physics, Vol. 496 (2024), Iss. P.112594

    https://doi.org/10.1016/j.jcp.2023.112594 [Citations: 2]
  92. Modelling of the convective plasma dynamics in the Sun: anelastic and Boussinesq MHD systems

    Mentrelli, Andrea

    Ricerche di Matematica, Vol. 68 (2019), Iss. 2 P.421

    https://doi.org/10.1007/s11587-018-0416-6 [Citations: 1]
  93. Numerical approximation of the Euler–Maxwell model in the quasineutral limit

    Degond, P. | Deluzet, F. | Savelief, D.

    Journal of Computational Physics, Vol. 231 (2012), Iss. 4 P.1917

    https://doi.org/10.1016/j.jcp.2011.11.011 [Citations: 37]
  94. An Asymptotic-Preserving all-speed scheme for the Euler and Navier–Stokes equations

    Cordier, Floraine | Degond, Pierre | Kumbaro, Anela

    Journal of Computational Physics, Vol. 231 (2012), Iss. 17 P.5685

    https://doi.org/10.1016/j.jcp.2012.04.025 [Citations: 116]
  95. An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes

    Goudon, Thierry | Llobell, Julie | Minjeaud, Sebastian

    Numerical Methods for Partial Differential Equations, Vol. 36 (2020), Iss. 5 P.1098

    https://doi.org/10.1002/num.22466 [Citations: 5]
  96. High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system

    Jiang, Yanqun | Chen, Xun | Zhang, Xu | Xiong, Tao | Zhou, Shuguang

    Advances in Aerodynamics, Vol. 2 (2020), Iss. 1

    https://doi.org/10.1186/s42774-020-00052-9 [Citations: 5]
  97. An all Froude high order IMEX scheme for the shallow water equations on unstructured Voronoi meshes

    Boscheri, Walter | Tavelli, Maurizio | Castro, Cristóbal E.

    Applied Numerical Mathematics, Vol. 185 (2023), Iss. P.311

    https://doi.org/10.1016/j.apnum.2022.11.022 [Citations: 9]
  98. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations

    Hu, J. | Jin, S. | Li, Q.

    2017

    https://doi.org/10.1016/bs.hna.2016.09.001 [Citations: 19]
  99. An all Mach number finite volume method for isentropic two-phase flow

    Lukáčová-Medvid’ová, Mária | Puppo, Gabriella | Thomann, Andrea

    Journal of Numerical Mathematics, Vol. 31 (2023), Iss. 3 P.175

    https://doi.org/10.1515/jnma-2022-0015 [Citations: 12]
  100. Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime

    Zou, Ziqiang | Grenier, Nicolas | Kokh, Samuel | Tenaud, Christian | Audit, Edouard

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110735

    https://doi.org/10.1016/j.jcp.2021.110735 [Citations: 1]
  101. Asymptotic error analysis of an IMEX Runge–Kutta method

    Kaiser, Klaus | Schütz, Jochen

    Journal of Computational and Applied Mathematics, Vol. 343 (2018), Iss. P.139

    https://doi.org/10.1016/j.cam.2018.04.044 [Citations: 0]
  102. A High-Order Method for Weakly Compressible Flows

    Kaiser, Klaus | Schütz, Jochen

    Communications in Computational Physics, Vol. 22 (2017), Iss. 4 P.1150

    https://doi.org/10.4208/cicp.OA-2017-0028 [Citations: 8]
  103. An asymptotic-preserving method for a relaxation of the Navier–Stokes–Korteweg equations

    Chertock, Alina | Degond, Pierre | Neusser, Jochen

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.387

    https://doi.org/10.1016/j.jcp.2017.01.030 [Citations: 10]
  104. A novel approach to the characteristic splitting scheme for mildly compressible flows based on the weighted averaged flux method

    Fiolitakis, A. | Pries, M.

    Journal of Computational Physics, Vol. 513 (2024), Iss. P.113197

    https://doi.org/10.1016/j.jcp.2024.113197 [Citations: 0]
  105. Behavior of the Discontinuous Galerkin Method for Compressible Flows at Low Mach Number on Triangles and Tetrahedrons

    Jung, Jonathan | Perrier, Vincent

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 1 P.A452

    https://doi.org/10.1137/23M154755X [Citations: 1]
  106. A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation

    Arun, K.R. | Krishnan, M. | Samantaray, S.

    Computers & Fluids, Vol. 233 (2022), Iss. P.105248

    https://doi.org/10.1016/j.compfluid.2021.105248 [Citations: 1]
  107. Self-organized hydrodynamics with congestion and path formation in crowds

    Degond, Pierre | Hua, Jiale

    Journal of Computational Physics, Vol. 237 (2013), Iss. P.299

    https://doi.org/10.1016/j.jcp.2012.11.033 [Citations: 36]
  108. Numerical simulation of time-dependent non-Newtonian compressible fluid flow in porous media: Finite element method and time integration approach

    Ahmad, Salman | Tiamiyu, Abd'gafar Tunde

    International Communications in Heat and Mass Transfer, Vol. 159 (2024), Iss. P.107934

    https://doi.org/10.1016/j.icheatmasstransfer.2024.107934 [Citations: 3]
  109. Implicit MAC scheme for compressible Navier–Stokes equations: low Mach asymptotic error estimates

    Maltese, David | Novotný, Antonín

    IMA Journal of Numerical Analysis, Vol. 41 (2021), Iss. 1 P.122

    https://doi.org/10.1093/imanum/drz072 [Citations: 2]
  110. An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes

    Chalons, Christophe | Girardin, Mathieu | Kokh, Samuel

    Communications in Computational Physics, Vol. 20 (2016), Iss. 1 P.188

    https://doi.org/10.4208/cicp.260614.061115a [Citations: 49]