Year: 2011
Communications in Computational Physics, Vol. 10 (2011), Iss. 1 : pp. 1–31
Abstract
An all speed scheme for the Isentropic Euler equations is presented in this paper. When the Mach number tends to zero, the compressible Euler equations converge to their incompressible counterpart, in which the density becomes a constant. Increasing approximation errors and severe stability constraints are the main difficulty in the low Mach regime. The key idea of our all speed scheme is the special semi-implicit time discretization, in which the low Mach number stiff term is divided into two parts, one being treated explicitly and the other one implicitly. Moreover, the flux of the density equation is also treated implicitly and an elliptic type equation is derived to obtain the density. In this way, the correct limit can be captured without requesting the mesh size and time step to be smaller than the Mach number. Compared with previous semi-implicit methods [11,13,29], firstly, nonphysical oscillations can be suppressed by choosing proper parameter, besides, only a linear elliptic equation needs to be solved implicitly which reduces much computational cost. We develop this semi-implicit time discretization in the framework of a first order Local Lax-Friedrichs (or Rusanov) scheme and numerical tests are displayed to demonstrate its performances.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.210709.210610a
Communications in Computational Physics, Vol. 10 (2011), Iss. 1 : pp. 1–31
Published online: 2011-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 31
-
An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows
Grenier, N. | Vila, J.-P. | Villedieu, P.Journal of Computational Physics, Vol. 252 (2013), Iss. P.1
https://doi.org/10.1016/j.jcp.2013.06.008 [Citations: 27] -
High order semi-implicit weighted compact nonlinear scheme for the full compressible Euler system at all Mach numbers
Jiang, Yan-Qun | Zhou, Shu-Guang | Hu, Ying-Gang | Zhang, XuComputers & Mathematics with Applications, Vol. 109 (2022), Iss. P.125
https://doi.org/10.1016/j.camwa.2022.01.020 [Citations: 2] -
Convergence of a finite volume scheme for the compressible Navier–Stokes system
Feireisl, Eduard | Lukáčová-Medvid’ová, Mária | Mizerová, Hana | She, BangweiESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 6 P.1957
https://doi.org/10.1051/m2an/2019043 [Citations: 21] -
A Mach-sensitive implicit–explicit scheme adapted to compressible multi-scale flows
Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.Journal of Computational and Applied Mathematics, Vol. 340 (2018), Iss. P.122
https://doi.org/10.1016/j.cam.2018.02.019 [Citations: 10] -
An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations
Boscheri, Walter | Dimarco, Giacomo | Tavelli, MaurizioComputer Methods in Applied Mechanics and Engineering, Vol. 374 (2021), Iss. P.113602
https://doi.org/10.1016/j.cma.2020.113602 [Citations: 27] -
Asymptotic-Preserving Scheme for the Resolution of Evolution Equations with Stiff Transport Terms
Fedele, Baptiste | Negulescu, Claudia | Possanner, StefanMultiscale Modeling & Simulation, Vol. 17 (2019), Iss. 1 P.307
https://doi.org/10.1137/18M1175732 [Citations: 3] -
Pedestrian and Evacuation Dynamics 2012
A Macroscopic Model for Bidirectional Pedestrian Flow
Appert-Rolland, Cécile | Degond, Pierre | Motsch, Sébastien2014
https://doi.org/10.1007/978-3-319-02447-9_48 [Citations: 2] -
A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system
Boscarino, Sebastiano | Qiu, Jing-Mei | Russo, Giovanni | Xiong, TaoJournal of Computational Physics, Vol. 392 (2019), Iss. P.594
https://doi.org/10.1016/j.jcp.2019.04.057 [Citations: 34] -
Numerical simulation of a compressible two-layer model: A first attempt with an implicit–explicit splitting scheme
Demay, Charles | Bourdarias, Christian | de Meux, Benoît de Laage | Gerbi, Stéphane | Hérard, Jean-MarcJournal of Computational and Applied Mathematics, Vol. 346 (2019), Iss. P.357
https://doi.org/10.1016/j.cam.2018.06.027 [Citations: 3] -
Asymptotic Transition from Kinetic to Adiabatic Electrons along Magnetic Field Lines
Cecco, Alexandra De | Deluzet, Fabrice | Negulescu, Claudia | Possanner, StefanMultiscale Modeling & Simulation, Vol. 15 (2017), Iss. 1 P.309
https://doi.org/10.1137/15M1043686 [Citations: 5] -
Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues
On the Behaviour of Upwind Schemes in the Low Mach Number Limit
Guillard, H. | Nkonga, B.2017
https://doi.org/10.1016/bs.hna.2016.09.002 [Citations: 14] -
UCNS3D: An open-source high-order finite-volume unstructured CFD solver
Antoniadis, Antonis F. | Drikakis, Dimitris | Farmakis, Pericles S. | Fu, Lin | Kokkinakis, Ioannis | Nogueira, Xesús | Silva, Paulo A.S.F. | Skote, Martin | Titarev, Vladimir | Tsoutsanis, PanagiotisComputer Physics Communications, Vol. 279 (2022), Iss. P.108453
https://doi.org/10.1016/j.cpc.2022.108453 [Citations: 28] -
An explicitness-preserving IMEX-split multiderivative method
Theodosiou, Eleni | Schütz, Jochen | Seal, DavidComputers & Mathematics with Applications, Vol. 158 (2024), Iss. P.139
https://doi.org/10.1016/j.camwa.2023.12.040 [Citations: 1] -
A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows
Bermúdez, A. | Busto, S. | Dumbser, M. | Ferrín, J.L. | Saavedra, L. | Vázquez-Cendón, M.E.Journal of Computational Physics, Vol. 421 (2020), Iss. P.109743
https://doi.org/10.1016/j.jcp.2020.109743 [Citations: 42] -
A hybrid AUSM scheme (HAUS) for multi-phase flows with all Mach numbers
Yoo, Young-Lin | Sung, Hong-GyeComputers & Fluids, Vol. 227 (2021), Iss. P.105050
https://doi.org/10.1016/j.compfluid.2021.105050 [Citations: 3] -
Flowfield dependent variation method
Girgis, Bassem R | Rani, Sarma L | Frendi, AbdelkaderInternational Journal of Numerical Methods for Heat & Fluid Flow, Vol. 26 (2016), Iss. 5 P.1486
https://doi.org/10.1108/HFF-04-2015-0137 [Citations: 1] -
On the Construction of Conservative Semi-Lagrangian IMEX Advection Schemes for Multiscale Time Dependent PDEs
Boscheri, Walter | Tavelli, Maurizio | Pareschi, LorenzoJournal of Scientific Computing, Vol. 90 (2022), Iss. 3
https://doi.org/10.1007/s10915-022-01768-0 [Citations: 3] -
Numerical Approximation of Hyperbolic Systems of Conservation Laws
The Case of Multidimensional Systems
Godlewski, Edwige | Raviart, Pierre-Arnaud2021
https://doi.org/10.1007/978-1-0716-1344-3_5 [Citations: 0] -
The barely implicit correction algorithm for low-Mach-Number flows
Zhang, Xiao | Chung, Joseph D. | Kaplan, Carolyn R. | Oran, Elaine S.Computers & Fluids, Vol. 175 (2018), Iss. P.230
https://doi.org/10.1016/j.compfluid.2018.08.019 [Citations: 13] -
A semi implicit compressible solver for two-phase flows of real fluids
Urbano, A. | Bibal, M. | Tanguy, S.Journal of Computational Physics, Vol. 456 (2022), Iss. P.111034
https://doi.org/10.1016/j.jcp.2022.111034 [Citations: 13] -
A pressure‐based method for weakly compressible two‐phase flows under a Baer–Nunziato type model with generic equations of state and pressure and velocity disequilibrium
Re, Barbara | Abgrall, RémiInternational Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 8 P.1183
https://doi.org/10.1002/fld.5087 [Citations: 20] -
An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit
Arun, K. R. | Ghorai, Rahuldev | Kar, MainakJournal of Scientific Computing, Vol. 97 (2023), Iss. 3
https://doi.org/10.1007/s10915-023-02389-x [Citations: 2] -
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
Asymptotic Preserving Property of a Semi-implicit Method
Zhang, Lei | Ghidaglia, Jean-Michel | Kumbaro, Anela2017
https://doi.org/10.1007/978-3-319-57394-6_17 [Citations: 0] -
A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Shallow Water Equations Over Irregular Bottom Topography
Liu, Xin
SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 5 P.B1136
https://doi.org/10.1137/19M1262590 [Citations: 5] -
All-Speed Numerical Methods for the Euler Equations via a Sequential Explicit Time Integration
Barsukow, Wasilij
Journal of Scientific Computing, Vol. 95 (2023), Iss. 2
https://doi.org/10.1007/s10915-023-02152-2 [Citations: 2] -
Two-way multi-lane traffic model for pedestrians in corridors
Appert-Rolland, Cécile | Degond, Pierre | Motsch, SébastienNetworks & Heterogeneous Media, Vol. 6 (2011), Iss. 3 P.351
https://doi.org/10.3934/nhm.2011.6.351 [Citations: 44] -
A low-diffusion self-adaptive flux-vector splitting approach for compressible flows
Iampietro, D. | Daude, F. | Galon, P.Computers & Fluids, Vol. 206 (2020), Iss. P.104586
https://doi.org/10.1016/j.compfluid.2020.104586 [Citations: 4] -
An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds
Modesti, Davide | Pirozzoli, SergioJournal of Scientific Computing, Vol. 75 (2018), Iss. 1 P.308
https://doi.org/10.1007/s10915-017-0534-4 [Citations: 16] -
Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system
Arun, K.R. | Das Gupta, A.J. | Samantaray, S.Applied Mathematics and Computation, Vol. 411 (2021), Iss. P.126469
https://doi.org/10.1016/j.amc.2021.126469 [Citations: 0] -
Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation
Bispen, Georgij | Lukáčová-Medvid'ová, Mária | Yelash, LeonidJournal of Computational Physics, Vol. 335 (2017), Iss. P.222
https://doi.org/10.1016/j.jcp.2017.01.020 [Citations: 51] -
Asymptotic-preserving schemes for multiscale physical problems
Jin, Shi
Acta Numerica, Vol. 31 (2022), Iss. P.415
https://doi.org/10.1017/S0962492922000010 [Citations: 30] -
An implicit-explicit solver for a two-fluid single-temperature model
Lukáčová-Medvid'ová, Mária | Peshkov, Ilya | Thomann, AndreaJournal of Computational Physics, Vol. 498 (2024), Iss. P.112696
https://doi.org/10.1016/j.jcp.2023.112696 [Citations: 2] -
Microscopically implicit–macroscopically explicit schemes for the BGK equation
Pieraccini, Sandra | Puppo, GabriellaJournal of Computational Physics, Vol. 231 (2012), Iss. 2 P.299
https://doi.org/10.1016/j.jcp.2011.08.027 [Citations: 16] -
Second order all speed method for the isentropic Euler equations
Tang, Min
Kinetic & Related Models, Vol. 5 (2012), Iss. 1 P.155
https://doi.org/10.3934/krm.2012.5.155 [Citations: 18] -
Quinpi: Integrating Conservation Laws with CWENO Implicit Methods
Puppo, G. | Semplice, M. | Visconti, G.Communications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 1 P.343
https://doi.org/10.1007/s42967-021-00171-0 [Citations: 7] -
High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers
Boscheri, Walter | Pareschi, LorenzoJournal of Computational Physics, Vol. 434 (2021), Iss. P.110206
https://doi.org/10.1016/j.jcp.2021.110206 [Citations: 48] -
Numerical Staggered Schemes for the Free-Congested Navier--Stokes Equations
Perrin, Charlotte | Saleh, KhaledSIAM Journal on Numerical Analysis, Vol. 60 (2022), Iss. 4 P.1824
https://doi.org/10.1137/21M1436488 [Citations: 3] -
An asymptotic preserving semi-implicit multiderivative solver
Schütz, Jochen | Seal, David C.Applied Numerical Mathematics, Vol. 160 (2021), Iss. P.84
https://doi.org/10.1016/j.apnum.2020.09.004 [Citations: 10] -
IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows
Bispen, Georgij | Arun, K. R. | Lukáčová-Medvid’ová, Mária | Noelle, SebastianCommunications in Computational Physics, Vol. 16 (2014), Iss. 2 P.307
https://doi.org/10.4208/cicp.040413.160114a [Citations: 36] -
Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime
Feireisl, Eduard | Lukáčová-Medviďová, Mária | Nečasová, Šárka | Novotný, Antonín | She, BangweiMultiscale Modeling & Simulation, Vol. 16 (2018), Iss. 1 P.150
https://doi.org/10.1137/16M1094233 [Citations: 17] -
Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit
Dimarco, Giacomo | Loubère, Raphaël | Vignal, Marie-HélèneSIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 5 P.A2099
https://doi.org/10.1137/16M1069274 [Citations: 43] -
A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations
Boscheri, Walter | Dimarco, Giacomo | Loubère, Raphaël | Tavelli, Maurizio | Vignal, Marie-HélèneJournal of Computational Physics, Vol. 415 (2020), Iss. P.109486
https://doi.org/10.1016/j.jcp.2020.109486 [Citations: 34] -
An Asymptotic Preserving Method for Linear Systems of Balance Laws Based on Galerkin’s Method
Schütz, Jochen
Journal of Scientific Computing, Vol. 60 (2014), Iss. 2 P.438
https://doi.org/10.1007/s10915-013-9801-1 [Citations: 3] -
A New Stable Splitting for the Isentropic Euler Equations
Kaiser, Klaus | Schütz, Jochen | Schöbel, Ruth | Noelle, SebastianJournal of Scientific Computing, Vol. 70 (2017), Iss. 3 P.1390
https://doi.org/10.1007/s10915-016-0286-6 [Citations: 17] -
An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations
Busto, S. | Dumbser, M. | Río-Martín, L.Applied Mathematics and Computation, Vol. 437 (2023), Iss. P.127539
https://doi.org/10.1016/j.amc.2022.127539 [Citations: 4] -
High order semi-implicit schemes for viscous compressible flows in 3D
Boscheri, Walter | Tavelli, MaurizioApplied Mathematics and Computation, Vol. 434 (2022), Iss. P.127457
https://doi.org/10.1016/j.amc.2022.127457 [Citations: 5] -
TVD-MOOD schemes based on implicit-explicit time integration
Michel-Dansac, Victor | Thomann, AndreaApplied Mathematics and Computation, Vol. 433 (2022), Iss. P.127397
https://doi.org/10.1016/j.amc.2022.127397 [Citations: 2] -
Steady low Mach number flows: Identification of the spurious mode and filtering method
Jung, Jonathan | Perrier, VincentJournal of Computational Physics, Vol. 468 (2022), Iss. P.111462
https://doi.org/10.1016/j.jcp.2022.111462 [Citations: 4] -
High Order Semi-implicit WENO Schemes for All-Mach Full Euler System of Gas Dynamics
Boscarino, Sebastiano | Qiu, Jingmei | Russo, Giovanni | Xiong, TaoSIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 2 P.B368
https://doi.org/10.1137/21M1424433 [Citations: 17] -
An entropy satisfying two-speed relaxation system for the barotropic Euler equations: application to the numerical approximation of low Mach number flows
Bouchut, François | Chalons, Christophe | Guisset, SébastienNumerische Mathematik, Vol. 145 (2020), Iss. 1 P.35
https://doi.org/10.1007/s00211-020-01111-5 [Citations: 6] -
Numerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit
Degond, P. | Liu, H. | Savelief, D. | Vignal, M.-H.Journal of Scientific Computing, Vol. 51 (2012), Iss. 1 P.59
https://doi.org/10.1007/s10915-011-9495-1 [Citations: 14] -
Efficient high-order discontinuous Galerkin computations of low Mach number flows
Zeifang, Jonas | Kaiser, Klaus | Beck, Andrea | Schütz, Jochen | Munz, Claus-DieterCommunications in Applied Mathematics and Computational Science, Vol. 13 (2018), Iss. 2 P.243
https://doi.org/10.2140/camcos.2018.13.243 [Citations: 11] -
A Drift-Asymptotic scheme for a fluid description of plasmas in strong magnetic fields
Deluzet, Fabrice | Ottaviani, Maurizio | Possanner, StefanComputer Physics Communications, Vol. 219 (2017), Iss. P.164
https://doi.org/10.1016/j.cpc.2017.05.018 [Citations: 2] -
A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics
Barsukow, Wasilij | Edelmann, Philipp V. F. | Klingenberg, Christian | Miczek, Fabian | Röpke, Friedrich K.Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.623
https://doi.org/10.1007/s10915-017-0372-4 [Citations: 26] -
A low Mach correction able to deal with low Mach acoustics
Bruel, Pascal | Delmas, Simon | Jung, Jonathan | Perrier, VincentJournal of Computational Physics, Vol. 378 (2019), Iss. P.723
https://doi.org/10.1016/j.jcp.2018.11.020 [Citations: 14] -
Theory, Numerics and Applications of Hyperbolic Problems II
Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numerics
Zakerzadeh, Hamed
2018
https://doi.org/10.1007/978-3-319-91548-7_50 [Citations: 0] -
Flux Splitting for Stiff Equations: A Notion on Stability
Schütz, Jochen | Noelle, SebastianJournal of Scientific Computing, Vol. 64 (2015), Iss. 2 P.522
https://doi.org/10.1007/s10915-014-9942-x [Citations: 12] -
Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime
Badsi, Mehdi
ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 2 P.701
https://doi.org/10.1051/m2an/2018070 [Citations: 1] -
Shear-induced migration in concentrated suspensions: Particle mass conservation, contact pressure and jamming
Ozenda, Olivier | Saramito, Pierre | Chambon, GuillaumeJournal of Non-Newtonian Fluid Mechanics, Vol. 304 (2022), Iss. P.104805
https://doi.org/10.1016/j.jnnfm.2022.104805 [Citations: 3] -
Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model
Pelanti, Marica
Applied Mathematics and Computation, Vol. 310 (2017), Iss. P.112
https://doi.org/10.1016/j.amc.2017.04.014 [Citations: 16] -
Droplet Interactions and Spray Processes
An Investigation of Different Splitting Techniques for the Isentropic Euler Equations
Zeifang, Jonas | Kaiser, Klaus | Schütz, Jochen | Massa, Francesco Carlo | Beck, Andrea2020
https://doi.org/10.1007/978-3-030-33338-6_4 [Citations: 1] -
A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics
Noelle, S. | Bispen, G. | Arun, K. R. | Lukáčová-Medviďová, M. | Munz, C.-D.SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 6 P.B989
https://doi.org/10.1137/120895627 [Citations: 63] -
Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations
Arun, K. R. | Samantaray, S.Journal of Scientific Computing, Vol. 82 (2020), Iss. 2
https://doi.org/10.1007/s10915-020-01138-8 [Citations: 10] -
An accurate multi-regime SPH scheme for barotropic flows
Collé, A. | Limido, J. | Vila, J.-P.Journal of Computational Physics, Vol. 388 (2019), Iss. P.561
https://doi.org/10.1016/j.jcp.2019.03.028 [Citations: 5] -
Phase Appearance or Disappearance in Two-Phase Flows
Cordier, Floraine | Degond, Pierre | Kumbaro, AnelaJournal of Scientific Computing, Vol. 58 (2014), Iss. 1 P.115
https://doi.org/10.1007/s10915-013-9725-9 [Citations: 23] -
A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method
Zeifang, Jonas | Beck, AndreaCommunications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 2 P.722
https://doi.org/10.1007/s42967-021-00137-2 [Citations: 1] -
Asymptotic-Preserving methods and multiscale models for plasma physics
Degond, Pierre | Deluzet, FabriceJournal of Computational Physics, Vol. 336 (2017), Iss. P.429
https://doi.org/10.1016/j.jcp.2017.02.009 [Citations: 37] -
A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes
Busto, S. | Río-Martín, L. | Vázquez-Cendón, M.E. | Dumbser, M.Applied Mathematics and Computation, Vol. 402 (2021), Iss. P.126117
https://doi.org/10.1016/j.amc.2021.126117 [Citations: 12] -
A new stable splitting for singularly perturbed ODEs
Schütz, Jochen | Kaiser, KlausApplied Numerical Mathematics, Vol. 107 (2016), Iss. P.18
https://doi.org/10.1016/j.apnum.2016.04.004 [Citations: 10] -
A time‐staggered second order conservative time scheme for variable density flow
Amino, Hector | Flageul, Cédric | Benhamadouche, Sofiane | Tiselj, Iztok | Carissimo, Bertrand | Ferrand, MartinInternational Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 12 P.1964
https://doi.org/10.1002/fld.5116 [Citations: 1] -
MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver
Fan, Duoming | Nonaka, Andrew | Almgren, Ann S. | Harpole, Alice | Zingale, MichaelThe Astrophysical Journal, Vol. 887 (2019), Iss. 2 P.212
https://doi.org/10.3847/1538-4357/ab4f75 [Citations: 15] -
High order all-speed semi-implicit weighted compact nonlinear scheme for the isentropic Navier–Stokes equations
Jiang, Yan-Qun | Zhou, Shu-Guang | Zhang, Xu | Hu, Ying-GangJournal of Computational and Applied Mathematics, Vol. 411 (2022), Iss. P.114272
https://doi.org/10.1016/j.cam.2022.114272 [Citations: 3] -
An Accurate SPH Scheme for Dynamic Fragmentation modelling
Collé, Anthony | Limido, Jérôme | Vila, Jean-Paul | Buzaud, E. | Cosculluela, A. | Couque, H. | Cadoni, E.EPJ Web of Conferences, Vol. 183 (2018), Iss. P.01030
https://doi.org/10.1051/epjconf/201818301030 [Citations: 7] -
Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension
Zakerzadeh, Hamed
ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.893
https://doi.org/10.1051/m2an/2019005 [Citations: 2] -
Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime
Dimarco, Giacomo | Loubère, Raphaël | Michel-Dansac, Victor | Vignal, Marie-HélèneJournal of Computational Physics, Vol. 372 (2018), Iss. P.178
https://doi.org/10.1016/j.jcp.2018.06.022 [Citations: 26] -
High order well-balanced asymptotic preserving IMEX RKDG schemes for the two-dimensional nonlinear shallow water equations
Xie, Xian | Dong, Haiyun | Li, MaojunJournal of Computational Physics, Vol. 510 (2024), Iss. P.113092
https://doi.org/10.1016/j.jcp.2024.113092 [Citations: 0] -
A Mach-sensitive splitting approach for Euler-like systems
Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 1 P.207
https://doi.org/10.1051/m2an/2017063 [Citations: 9] -
Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity
Dellacherie, Stéphane | Jung, Jonathan | Omnes, PascalESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 3 P.1199
https://doi.org/10.1051/m2an/2021016 [Citations: 3] -
An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces
Liu, Xin | Chertock, Alina | Kurganov, AlexanderJournal of Computational Physics, Vol. 391 (2019), Iss. P.259
https://doi.org/10.1016/j.jcp.2019.04.035 [Citations: 15] -
Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems
A Conservative a-Posteriori Time-Limiting Procedure in Quinpi Schemes
Visconti, Giuseppe | Tozza, Silvia | Semplice, Matteo | Puppo, Gabriella2023
https://doi.org/10.1007/978-3-031-29875-2_9 [Citations: 0] -
A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Rotating Shallow Water Equations with Nonflat Bottom Topography
Kurganov, Alexander | Liu, Yongle | Lukáčová-Medviďová, MáriaSIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 3 P.A1655
https://doi.org/10.1137/21M141573X [Citations: 4] -
An asymptotic preserving and energy stable scheme for the Euler-Poisson system in the quasineutral limit
Arun, K.R. | Ghorai, Rahuldev | Kar, MainakApplied Numerical Mathematics, Vol. 198 (2024), Iss. P.375
https://doi.org/10.1016/j.apnum.2024.01.018 [Citations: 0] -
High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers
Huang, Guanlan | Xing, Yulong | Xiong, TaoJournal of Computational Physics, Vol. 463 (2022), Iss. P.111255
https://doi.org/10.1016/j.jcp.2022.111255 [Citations: 13] -
Pedestrian models with congestion effects
Aceves-Sánchez, Pedro | Bailo, Rafael | Degond, Pierre | Mercier, ZoéMathematical Models and Methods in Applied Sciences, Vol. 34 (2024), Iss. 06 P.1001
https://doi.org/10.1142/S0218202524400050 [Citations: 2] -
High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler–Poisson System in the Quasineutral Limit
Arun, K. R. | Crouseilles, N. | Samantaray, S.Journal of Scientific Computing, Vol. 100 (2024), Iss. 1
https://doi.org/10.1007/s10915-024-02577-3 [Citations: 0] -
An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations
Haack, Jeffrey | Jin, Shi | Liu, Jian‐GuoCommunications in Computational Physics, Vol. 12 (2012), Iss. 4 P.955
https://doi.org/10.4208/cicp.250910.131011a [Citations: 87] -
Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension
Hošek, Radim | She, BangweiJournal of Numerical Mathematics, Vol. 26 (2018), Iss. 3 P.111
https://doi.org/10.1515/jnma-2017-0010 [Citations: 17] -
Asymptotic problems and numerical schemes for traffic flows with unilateral constraints describing the formation of jams
Berthelin, Florent | Goudon, Thierry | Polizzi, Bastien | Ribot, MagaliNetworks & Heterogeneous Media, Vol. 12 (2017), Iss. 4 P.591
https://doi.org/10.3934/nhm.2017024 [Citations: 5] -
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
Comparison of Cell-Centered and Staggered Pressure-Correction Schemes for All-Mach Flows
Therme, Nicolas | Zaza, Chady2014
https://doi.org/10.1007/978-3-319-05591-6_99 [Citations: 0] -
Numerical simulations of the Euler system with congestion constraint
Degond, Pierre | Hua, Jiale | Navoret, LaurentJournal of Computational Physics, Vol. 230 (2011), Iss. 22 P.8057
https://doi.org/10.1016/j.jcp.2011.07.010 [Citations: 33] -
Recasting an operator splitting solver into a standard finite volume flux-based algorithm. The case of a Lagrange-projection-type method for gas dynamics
Bourgeois, Rémi | Tremblin, Pascal | Kokh, Samuel | Padioleau, ThomasJournal of Computational Physics, Vol. 496 (2024), Iss. P.112594
https://doi.org/10.1016/j.jcp.2023.112594 [Citations: 2] -
Modelling of the convective plasma dynamics in the Sun: anelastic and Boussinesq MHD systems
Mentrelli, Andrea
Ricerche di Matematica, Vol. 68 (2019), Iss. 2 P.421
https://doi.org/10.1007/s11587-018-0416-6 [Citations: 1] -
Numerical approximation of the Euler–Maxwell model in the quasineutral limit
Degond, P. | Deluzet, F. | Savelief, D.Journal of Computational Physics, Vol. 231 (2012), Iss. 4 P.1917
https://doi.org/10.1016/j.jcp.2011.11.011 [Citations: 37] -
An Asymptotic-Preserving all-speed scheme for the Euler and Navier–Stokes equations
Cordier, Floraine | Degond, Pierre | Kumbaro, AnelaJournal of Computational Physics, Vol. 231 (2012), Iss. 17 P.5685
https://doi.org/10.1016/j.jcp.2012.04.025 [Citations: 116] -
An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes
Goudon, Thierry | Llobell, Julie | Minjeaud, SebastianNumerical Methods for Partial Differential Equations, Vol. 36 (2020), Iss. 5 P.1098
https://doi.org/10.1002/num.22466 [Citations: 5] -
High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system
Jiang, Yanqun | Chen, Xun | Zhang, Xu | Xiong, Tao | Zhou, ShuguangAdvances in Aerodynamics, Vol. 2 (2020), Iss. 1
https://doi.org/10.1186/s42774-020-00052-9 [Citations: 5] -
An all Froude high order IMEX scheme for the shallow water equations on unstructured Voronoi meshes
Boscheri, Walter | Tavelli, Maurizio | Castro, Cristóbal E.Applied Numerical Mathematics, Vol. 185 (2023), Iss. P.311
https://doi.org/10.1016/j.apnum.2022.11.022 [Citations: 9] -
Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues
Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations
Hu, J. | Jin, S. | Li, Q.2017
https://doi.org/10.1016/bs.hna.2016.09.001 [Citations: 19] -
An all Mach number finite volume method for isentropic two-phase flow
Lukáčová-Medvid’ová, Mária | Puppo, Gabriella | Thomann, AndreaJournal of Numerical Mathematics, Vol. 31 (2023), Iss. 3 P.175
https://doi.org/10.1515/jnma-2022-0015 [Citations: 12] -
Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime
Zou, Ziqiang | Grenier, Nicolas | Kokh, Samuel | Tenaud, Christian | Audit, EdouardJournal of Computational Physics, Vol. 448 (2022), Iss. P.110735
https://doi.org/10.1016/j.jcp.2021.110735 [Citations: 1] -
Asymptotic error analysis of an IMEX Runge–Kutta method
Kaiser, Klaus | Schütz, JochenJournal of Computational and Applied Mathematics, Vol. 343 (2018), Iss. P.139
https://doi.org/10.1016/j.cam.2018.04.044 [Citations: 0] -
A High-Order Method for Weakly Compressible Flows
Kaiser, Klaus | Schütz, JochenCommunications in Computational Physics, Vol. 22 (2017), Iss. 4 P.1150
https://doi.org/10.4208/cicp.OA-2017-0028 [Citations: 8] -
An asymptotic-preserving method for a relaxation of the Navier–Stokes–Korteweg equations
Chertock, Alina | Degond, Pierre | Neusser, JochenJournal of Computational Physics, Vol. 335 (2017), Iss. P.387
https://doi.org/10.1016/j.jcp.2017.01.030 [Citations: 10] -
A novel approach to the characteristic splitting scheme for mildly compressible flows based on the weighted averaged flux method
Fiolitakis, A. | Pries, M.Journal of Computational Physics, Vol. 513 (2024), Iss. P.113197
https://doi.org/10.1016/j.jcp.2024.113197 [Citations: 0] -
Behavior of the Discontinuous Galerkin Method for Compressible Flows at Low Mach Number on Triangles and Tetrahedrons
Jung, Jonathan | Perrier, VincentSIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 1 P.A452
https://doi.org/10.1137/23M154755X [Citations: 1] -
A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation
Arun, K.R. | Krishnan, M. | Samantaray, S.Computers & Fluids, Vol. 233 (2022), Iss. P.105248
https://doi.org/10.1016/j.compfluid.2021.105248 [Citations: 1] -
Self-organized hydrodynamics with congestion and path formation in crowds
Degond, Pierre | Hua, JialeJournal of Computational Physics, Vol. 237 (2013), Iss. P.299
https://doi.org/10.1016/j.jcp.2012.11.033 [Citations: 36] -
Numerical simulation of time-dependent non-Newtonian compressible fluid flow in porous media: Finite element method and time integration approach
Ahmad, Salman | Tiamiyu, Abd'gafar TundeInternational Communications in Heat and Mass Transfer, Vol. 159 (2024), Iss. P.107934
https://doi.org/10.1016/j.icheatmasstransfer.2024.107934 [Citations: 3] -
Implicit MAC scheme for compressible Navier–Stokes equations: low Mach asymptotic error estimates
Maltese, David | Novotný, AntonínIMA Journal of Numerical Analysis, Vol. 41 (2021), Iss. 1 P.122
https://doi.org/10.1093/imanum/drz072 [Citations: 2] -
An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes
Chalons, Christophe | Girardin, Mathieu | Kokh, SamuelCommunications in Computational Physics, Vol. 20 (2016), Iss. 1 P.188
https://doi.org/10.4208/cicp.260614.061115a [Citations: 49]