On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws

On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 3 : pp. 635–671

Abstract

This paper is concerned with a new version of the Osher-Solomon Riemann solver and is based on a numerical integration of the path-dependent dissipation matrix. The resulting scheme is much simpler than the original one and is applicable to general hyperbolic conservation laws, while retaining the attractive features of the original solver: the method is entropy-satisfying, differentiable and complete in the sense that it attributes a different numerical viscosity to each characteristic field, in particular to the intermediate ones, since the full eigenstructure of the underlying hyperbolic system is used. To illustrate the potential of the proposed scheme we show applications to the following hyperbolic conservation laws: Euler equations of compressible gasdynamics with ideal gas and real gas equation of state, classical and relativistic MHD equations as well as the equations of nonlinear elasticity. To the knowledge of the authors, apart from the Euler equations with ideal gas, an Osher-type scheme has never been devised before for any of these complicated PDE systems. Since our new general Riemann solver can be directly used as a building block of high order finite volume and discontinuous Galerkin schemes we also show the extension to higher order of accuracy and multiple space dimensions in the new framework of PNPM schemes on unstructured meshes recently proposed in [9].

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.170610.021210a

Communications in Computational Physics, Vol. 10 (2011), Iss. 3 : pp. 635–671

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    37

Keywords:   

  1. A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes

    Tavelli, Maurizio | Dumbser, Michael

    Applied Mathematics and Computation, Vol. 234 (2014), Iss. P.623

    https://doi.org/10.1016/j.amc.2014.02.032 [Citations: 21]
  2. A diffuse interface method for complex three-dimensional free surface flows

    Dumbser, Michael

    Computer Methods in Applied Mechanics and Engineering, Vol. 257 (2013), Iss. P.47

    https://doi.org/10.1016/j.cma.2013.01.006 [Citations: 32]
  3. Development of a finite volume two-dimensional model and its application in a bay with two inlets: Mobile Bay, Alabama

    Lee, Jun | Lee, Jungwoo | Yun, Sang-Leen | Oh, Hye-Cheol

    Continental Shelf Research, Vol. 146 (2017), Iss. P.13

    https://doi.org/10.1016/j.csr.2017.08.002 [Citations: 2]
  4. High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Gaburro, Elena | Boscheri, Walter | Chiocchetti, Simone | Klingenberg, Christian | Springel, Volker | Dumbser, Michael

    Journal of Computational Physics, Vol. 407 (2020), Iss. P.109167

    https://doi.org/10.1016/j.jcp.2019.109167 [Citations: 72]
  5. A new class of Moving-Least-Squares WENO–SPH schemes

    Avesani, Diego | Dumbser, Michael | Bellin, Alberto

    Journal of Computational Physics, Vol. 270 (2014), Iss. P.278

    https://doi.org/10.1016/j.jcp.2014.03.041 [Citations: 67]
  6. A unified Eulerian framework for multimaterial continuum mechanics

    Jackson, Haran | Nikiforakis, Nikos

    Journal of Computational Physics, Vol. 401 (2020), Iss. P.109022

    https://doi.org/10.1016/j.jcp.2019.109022 [Citations: 12]
  7. A fast numerical scheme for the Godunov–Peshkov–Romenski model of continuum mechanics

    Jackson, Haran

    Journal of Computational Physics, Vol. 348 (2017), Iss. P.514

    https://doi.org/10.1016/j.jcp.2017.07.055 [Citations: 7]
  8. Brain venous haemodynamics, neurological diseases and mathematical modelling. A review

    Toro, Eleuterio F.

    Applied Mathematics and Computation, Vol. 272 (2016), Iss. P.542

    https://doi.org/10.1016/j.amc.2015.06.066 [Citations: 28]
  9. A discontinuous Galerkin method for the five-equations multiphase model

    White, William J. | Huang, Ziyang | Johnsen, Eric

    AIAA SCITECH 2024 Forum, (2024),

    https://doi.org/10.2514/6.2024-1755 [Citations: 0]
  10. Riemann solution for ideal isentropic magnetogasdynamics

    Kuila, Sahadeb | Sekhar, T. Raja

    Meccanica, Vol. 49 (2014), Iss. 10 P.2453

    https://doi.org/10.1007/s11012-014-0009-8 [Citations: 19]
  11. ADER-WENO finite volume schemes with space–time adaptive mesh refinement

    Dumbser, Michael | Zanotti, Olindo | Hidalgo, Arturo | Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 248 (2013), Iss. P.257

    https://doi.org/10.1016/j.jcp.2013.04.017 [Citations: 151]
  12. Exact and Numerical Solutions of the Riemann Problem for a Conservative Model of Compressible Two-Phase Flows

    Thein, Ferdinand | Romenski, Evgeniy | Dumbser, Michael

    Journal of Scientific Computing, Vol. 93 (2022), Iss. 3

    https://doi.org/10.1007/s10915-022-02028-x [Citations: 18]
  13. A Structure-Preserving Semi-implicit IMEX Finite Volume Scheme for Ideal Magnetohydrodynamics at all Mach and Alfvén Numbers

    Boscheri, Walter | Thomann, Andrea

    Journal of Scientific Computing, Vol. 100 (2024), Iss. 3

    https://doi.org/10.1007/s10915-024-02606-1 [Citations: 1]
  14. Modeling blood flow in viscoelastic vessels: the 1D augmented fluid–structure interaction system

    Bertaglia, Giulia | Caleffi, Valerio | Valiani, Alessandro

    Computer Methods in Applied Mechanics and Engineering, Vol. 360 (2020), Iss. P.112772

    https://doi.org/10.1016/j.cma.2019.112772 [Citations: 31]
  15. An all Mach number scheme for visco-resistive magnetically-dominated MHD flows

    Dematté, Riccardo | Farmakalides, Alexander A. | Millmore, Stephen | Nikiforakis, Nikos

    Journal of Computational Physics, Vol. 514 (2024), Iss. P.113229

    https://doi.org/10.1016/j.jcp.2024.113229 [Citations: 0]
  16. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    Dumbser, Michael | Loubère, Raphaël

    Journal of Computational Physics, Vol. 319 (2016), Iss. P.163

    https://doi.org/10.1016/j.jcp.2016.05.002 [Citations: 101]
  17. Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes

    Boscheri, Walter | Dumbser, Michael

    Communications in Computational Physics, Vol. 14 (2013), Iss. 5 P.1174

    https://doi.org/10.4208/cicp.181012.010313a [Citations: 68]
  18. Data-driven Modeling of the Solar Corona by a New Three-dimensional Path-conservative Osher–Solomon MHD Model

    Feng, Xueshang | Li, Caixia | Xiang, Changqing | Zhang, Man | Li, HuiChao | Wei, Fengsi

    The Astrophysical Journal Supplement Series, Vol. 233 (2017), Iss. 1 P.10

    https://doi.org/10.3847/1538-4365/aa957a [Citations: 23]
  19. Solar Coronal Modeling by Path-conservative HLLEM Riemann Solver

    Li, Caixia | Feng, Xueshang | Xiang, Changqing | Zhang, Man | Li, Huichao | Wei, Fengsi

    The Astrophysical Journal, Vol. 867 (2018), Iss. 1 P.42

    https://doi.org/10.3847/1538-4357/aae200 [Citations: 11]
  20. Flux splitting schemes for the Euler equations

    Toro, E.F. | Vázquez-Cendón, M.E.

    Computers & Fluids, Vol. 70 (2012), Iss. P.1

    https://doi.org/10.1016/j.compfluid.2012.08.023 [Citations: 130]
  21. A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier−Stokes equations with general equation of state

    Dumbser, Michael | Casulli, Vincenzo

    Applied Mathematics and Computation, Vol. 272 (2016), Iss. P.479

    https://doi.org/10.1016/j.amc.2015.08.042 [Citations: 26]
  22. Reprint of: Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes

    Gaburro, Elena | Dumbser, Michael | Castro, Manuel J.

    Computers & Fluids, Vol. 169 (2018), Iss. P.263

    https://doi.org/10.1016/j.compfluid.2018.03.051 [Citations: 3]
  23. High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes

    Boscheri, Walter

    Archives of Computational Methods in Engineering, Vol. 24 (2017), Iss. 4 P.751

    https://doi.org/10.1007/s11831-016-9188-x [Citations: 15]
  24. Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations

    Chandrashekar, Praveen

    Communications in Computational Physics, Vol. 14 (2013), Iss. 5 P.1252

    https://doi.org/10.4208/cicp.170712.010313a [Citations: 192]
  25. ADER scheme with a simplified solver for the generalized Riemann problem and an average ENO reconstruction procedure. Application to blood flow

    Montecinos, Gino I. | Santacá, Andrea | Celant, Morena | Müller, Lucas O. | Toro, Eleuterio F.

    Computers & Fluids, Vol. 248 (2022), Iss. P.105685

    https://doi.org/10.1016/j.compfluid.2022.105685 [Citations: 5]
  26. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

    New Types of Jacobian-Free Approximate Riemann Solvers for Hyperbolic Systems

    Castro, Manuel J. | Gallardo, José M. | Marquina, Antonio

    2017

    https://doi.org/10.1007/978-3-319-57394-6_3 [Citations: 0]
  27. Flux vector splitting schemes applied to a conservative 1D blood flow model with transport for arteries and veins

    Spilimbergo, Alessandra | Toro, Eleuterio F. | Siviglia, Annunziato | Müller, Lucas O.

    Computers & Fluids, Vol. 271 (2024), Iss. P.106165

    https://doi.org/10.1016/j.compfluid.2023.106165 [Citations: 1]
  28. On Thermodynamically Compatible Finite Volume Methods and Path-Conservative ADER Discontinuous Galerkin Schemes for Turbulent Shallow Water Flows

    Busto, Saray | Dumbser, Michael | Gavrilyuk, Sergey | Ivanova, Kseniya

    Journal of Scientific Computing, Vol. 88 (2021), Iss. 1

    https://doi.org/10.1007/s10915-021-01521-z [Citations: 32]
  29. TRENT2D❄: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems

    Zugliani, Daniel | Rosatti, Giorgio

    Cold Regions Science and Technology, Vol. 190 (2021), Iss. P.103343

    https://doi.org/10.1016/j.coldregions.2021.103343 [Citations: 13]
  30. Efficient Implementation of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE Engine

    Dumbser, Michael | Fambri, Francesco | Tavelli, Maurizio | Bader, Michael | Weinzierl, Tobias

    Axioms, Vol. 7 (2018), Iss. 3 P.63

    https://doi.org/10.3390/axioms7030063 [Citations: 41]
  31. A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems

    Dumbser, Michael | Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 304 (2016), Iss. P.275

    https://doi.org/10.1016/j.jcp.2015.10.014 [Citations: 146]
  32. Handbook of Numerical Methods for Hyperbolic Problems - Basic and Fundamental Issues

    The Riemann Problem

    Toro, E.F.

    2016

    https://doi.org/10.1016/bs.hna.2016.09.015 [Citations: 6]
  33. Modeling blood flow in networks of viscoelastic vessels with the 1-D augmented fluid–structure interaction system

    Piccioli, Francesco | Bertaglia, Giulia | Valiani, Alessandro | Caleffi, Valerio

    Journal of Computational Physics, Vol. 464 (2022), Iss. P.111364

    https://doi.org/10.1016/j.jcp.2022.111364 [Citations: 19]
  34. Reformulations for general advection–diffusion–reaction equations and locally implicit ADER schemes

    Montecinos, Gino I. | Toro, Eleuterio F.

    Journal of Computational Physics, Vol. 275 (2014), Iss. P.415

    https://doi.org/10.1016/j.jcp.2014.06.018 [Citations: 41]
  35. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    Well-Balanced Schemes and Path-Conservative Numerical Methods

    Castro, M.J. | Morales de Luna, T. | Parés, C.

    2017

    https://doi.org/10.1016/bs.hna.2016.10.002 [Citations: 43]
  36. Discontinuous Galerkin Methods for Compressible and Incompressible Flows on Space–Time Adaptive Meshes: Toward a Novel Family of Efficient Numerical Methods for Fluid Dynamics

    Fambri, Francesco

    Archives of Computational Methods in Engineering, Vol. 27 (2020), Iss. 1 P.199

    https://doi.org/10.1007/s11831-018-09308-6 [Citations: 13]
  37. Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: Mathematical models, numerical methods and applications

    Toro, Eleuterio Francisco | Celant, Morena | Zhang, Qinghui | Contarino, Christian | Agarwal, Nivedita | Linninger, Andreas | Müller, Lucas Omar

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 38 (2022), Iss. 1

    https://doi.org/10.1002/cnm.3532 [Citations: 23]
  38. A comparison of explicit and semi‐implicit finite volume schemes for viscous compressible flows in elastic pipes in fast transient regime

    Ioriatti, Matteo | Dumbser, Michael | Iben, Uwe

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 97 (2017), Iss. 11 P.1358

    https://doi.org/10.1002/zamm.201600010 [Citations: 10]
  39. Well‐balanced high‐order solver for blood flow in networks of vessels with variable properties

    Müller, Lucas O. | Toro, Eleuterio F.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 29 (2013), Iss. 12 P.1388

    https://doi.org/10.1002/cnm.2580 [Citations: 88]
  40. A hyperbolic reformulation of the Serre-Green-Naghdi model for general bottom topographies

    Bassi, C. | Bonaventura, L. | Busto, S. | Dumbser, M.

    Computers & Fluids, Vol. 212 (2020), Iss. P.104716

    https://doi.org/10.1016/j.compfluid.2020.104716 [Citations: 23]
  41. A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws

    Loubère, Raphaël | Dumbser, Michael | Diot, Steven

    Communications in Computational Physics, Vol. 16 (2014), Iss. 3 P.718

    https://doi.org/10.4208/cicp.181113.140314a [Citations: 89]
  42. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows

    Feng, Yongliang | Boivin, Pierre | Jacob, Jérôme | Sagaut, Pierre

    Journal of Computational Physics, Vol. 394 (2019), Iss. P.82

    https://doi.org/10.1016/j.jcp.2019.05.031 [Citations: 97]
  43. On a class of two-dimensional incomplete Riemann solvers

    Gallardo, José M. | Schneider, Kleiton A. | Castro, Manuel J.

    Journal of Computational Physics, Vol. 386 (2019), Iss. P.541

    https://doi.org/10.1016/j.jcp.2019.02.034 [Citations: 15]
  44. Jacobian-free approximate solvers for hyperbolic systems: Application to relativistic magnetohydrodynamics

    Castro, Manuel J. | Gallardo, José M. | Marquina, Antonio

    Computer Physics Communications, Vol. 219 (2017), Iss. P.108

    https://doi.org/10.1016/j.cpc.2017.05.013 [Citations: 7]
  45. An efficient, second order accurate, universal generalized Riemann problem solver based on the HLLI Riemann solver

    Balsara, Dinshaw S. | Li, Jiequan | Montecinos, Gino I.

    Journal of Computational Physics, Vol. 375 (2018), Iss. P.1238

    https://doi.org/10.1016/j.jcp.2018.09.018 [Citations: 23]
  46. Numerical Dissipation Control in High-Order Methods for Compressible Turbulence: Recent Development

    Yee, H. | Sjögreen, Björn

    Fluids, Vol. 9 (2024), Iss. 6 P.127

    https://doi.org/10.3390/fluids9060127 [Citations: 1]
  47. Polynomial viscosity methods for multispecies kinematic flow models

    Bürger, Raimund | Mulet, Pep | Rubio, Lihki

    Numerical Methods for Partial Differential Equations, Vol. 32 (2016), Iss. 4 P.1265

    https://doi.org/10.1002/num.22051 [Citations: 2]
  48. A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers

    Tavelli, Maurizio | Dumbser, Michael

    Journal of Computational Physics, Vol. 341 (2017), Iss. P.341

    https://doi.org/10.1016/j.jcp.2017.03.030 [Citations: 91]
  49. A direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    Boscheri, Walter | Dumbser, Michael

    Journal of Computational Physics, Vol. 275 (2014), Iss. P.484

    https://doi.org/10.1016/j.jcp.2014.06.059 [Citations: 106]
  50. A well-balanced path conservative SPH scheme for nonconservative hyperbolic systems with applications to shallow water and multi-phase flows

    Rossi, Giulia | Dumbser, Michael | Armanini, Aronne

    Computers & Fluids, Vol. 154 (2017), Iss. P.102

    https://doi.org/10.1016/j.compfluid.2017.05.034 [Citations: 15]
  51. Discontinuous Galerkin finite element scheme for a conserved higher-order traffic flow model by exploring Riemann solvers

    Qiao, Dian-liang | Zhang, Peng | Wong, S.C. | Choi, Keechoo

    Applied Mathematics and Computation, Vol. 244 (2014), Iss. P.567

    https://doi.org/10.1016/j.amc.2014.07.002 [Citations: 3]
  52. A numerical scheme for non-Newtonian fluids and plastic solids under the GPR model

    Jackson, Haran | Nikiforakis, Nikos

    Journal of Computational Physics, Vol. 387 (2019), Iss. P.410

    https://doi.org/10.1016/j.jcp.2019.02.025 [Citations: 19]
  53. Direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws

    Boscheri, Walter | Loubère, Raphaël | Dumbser, Michael

    Journal of Computational Physics, Vol. 292 (2015), Iss. P.56

    https://doi.org/10.1016/j.jcp.2015.03.015 [Citations: 55]
  54. A New Thermodynamically Compatible Finite Volume Scheme for Magnetohydrodynamics

    Busto, Saray | Dumbser, Michael

    SIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 1 P.343

    https://doi.org/10.1137/22M147815X [Citations: 12]
  55. Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers

    Boscheri, Walter | Balsara, Dinshaw S. | Dumbser, Michael

    Journal of Computational Physics, Vol. 267 (2014), Iss. P.112

    https://doi.org/10.1016/j.jcp.2014.02.023 [Citations: 61]
  56. A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows

    Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 231 (2012), Iss. 22 P.7476

    https://doi.org/10.1016/j.jcp.2011.12.025 [Citations: 150]
  57. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    Gaburro, Elena | Castro, Manuel J | Dumbser, Michael

    Monthly Notices of the Royal Astronomical Society, Vol. 477 (2018), Iss. 2 P.2251

    https://doi.org/10.1093/mnras/sty542 [Citations: 42]
  58. An anatomically detailed arterial-venous network model. Cerebral and coronary circulation

    Müller, Lucas O. | Watanabe, Sansuke M. | Toro, Eleuterio F. | Feijóo, Raúl A. | Blanco, Pablo J.

    Frontiers in Physiology, Vol. 14 (2023), Iss.

    https://doi.org/10.3389/fphys.2023.1162391 [Citations: 6]
  59. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data

    Bertaglia, Giulia | Navas-Montilla, Adrián | Valiani, Alessandro | Monge García, Manuel Ignacio | Murillo, Javier | Caleffi, Valerio

    Journal of Biomechanics, Vol. 100 (2020), Iss. P.109595

    https://doi.org/10.1016/j.jbiomech.2019.109595 [Citations: 19]
  60. ENO-ET: a reconstruction scheme based on extended ENO stencil and truncated highest-order term

    Montecinos, Gino I. | Toro, Eleuterio F.

    Applied Mathematics and Computation, Vol. 442 (2023), Iss. P.127742

    https://doi.org/10.1016/j.amc.2022.127742 [Citations: 0]
  61. High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: Applications to compressible multi-phase flows

    Dumbser, Michael | Boscheri, Walter

    Computers & Fluids, Vol. 86 (2013), Iss. P.405

    https://doi.org/10.1016/j.compfluid.2013.07.024 [Citations: 60]
  62. Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

    Cell-Centered Finite Volume Methods

    Feng, Xueshang

    2020

    https://doi.org/10.1007/978-981-13-9081-4_2 [Citations: 1]
  63. On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws

    Dumbser, Michael | Uuriintsetseg, Ariunaa | Zanotti, Olindo

    Communications in Computational Physics, Vol. 14 (2013), Iss. 2 P.301

    https://doi.org/10.4208/cicp.310112.120912a [Citations: 32]
  64. Pollutant transport by shallow water equations on unstructured meshes: Hyperbolization of the model and numerical solution via a novel flux splitting scheme

    Vanzo, Davide | Siviglia, Annunziato | Toro, Eleuterio F.

    Journal of Computational Physics, Vol. 321 (2016), Iss. P.1

    https://doi.org/10.1016/j.jcp.2016.05.023 [Citations: 25]
  65. A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Equations: Applications in Shallow Water Equations

    赵, 晓旭

    Advances in Applied Mathematics, Vol. 12 (2023), Iss. 07 P.3381

    https://doi.org/10.12677/AAM.2023.127337 [Citations: 1]
  66. A path-conservative Osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes

    Leibinger, Julia | Dumbser, Michael | Iben, Uwe | Wayand, Isabell

    Applied Numerical Mathematics, Vol. 105 (2016), Iss. P.47

    https://doi.org/10.1016/j.apnum.2016.02.001 [Citations: 19]
  67. FlowModellium Software Package for Calculating High-Speed Flows of Compressible Fluid

    Petrov, M. N. | Tambova, A. A. | Titarev, V. A. | Utyuzhnikov, S. V. | Chikitkin, A. V.

    Computational Mathematics and Mathematical Physics, Vol. 58 (2018), Iss. 11 P.1865

    https://doi.org/10.1134/S0965542518110118 [Citations: 16]
  68. Hyperbolic compartmental models for epidemic spread on networks with uncertain data: Application to the emergence of COVID-19 in Italy

    Bertaglia, Giulia | Pareschi, Lorenzo

    Mathematical Models and Methods in Applied Sciences, Vol. 31 (2021), Iss. 12 P.2495

    https://doi.org/10.1142/S0218202521500548 [Citations: 26]
  69. Trends in Differential Equations and Applications

    Approximate Osher-Solomon Schemes for Hyperbolic Systems

    Castro, M. J. | Gallardo, J. M. | Marquina, A.

    2016

    https://doi.org/10.1007/978-3-319-32013-7_1 [Citations: 0]
  70. A high order special relativistic hydrodynamic and magnetohydrodynamic code with space–time adaptive mesh refinement

    Zanotti, Olindo | Dumbser, Michael

    Computer Physics Communications, Vol. 188 (2015), Iss. P.110

    https://doi.org/10.1016/j.cpc.2014.11.015 [Citations: 46]
  71. Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems

    Schneider, Kleiton A. | Gallardo, José M. | Balsara, Dinshaw S. | Nkonga, Boniface | Parés, Carlos

    Journal of Computational Physics, Vol. 444 (2021), Iss. P.110547

    https://doi.org/10.1016/j.jcp.2021.110547 [Citations: 18]
  72. Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes

    Montecinos, Gino I. | Müller, Lucas O. | Toro, Eleuterio F.

    Journal of Computational Physics, Vol. 266 (2014), Iss. P.101

    https://doi.org/10.1016/j.jcp.2014.02.013 [Citations: 55]
  73. Computational Fluid Dynamics 2010

    Reformulated Osher-Type Riemann Solver

    Toro, Eleuterio F. | Dumbser, Michael

    2011

    https://doi.org/10.1007/978-3-642-17884-9_14 [Citations: 0]
  74. Path Conservative WENO Schemes and Riemann Solvers for Continuum Mechanics

    Uuriintsetseg, Ariunaa | Dumbster, Michael

    2019 International Conference on Advanced Computing and Applications (ACOMP), (2019), P.103

    https://doi.org/10.1109/ACOMP.2019.00023 [Citations: 0]
  75. Efficient implementation of high order unstructured WENO schemes for cavitating flows

    Dumbser, Michael | Iben, Uwe | Munz, Claus-Dieter

    Computers & Fluids, Vol. 86 (2013), Iss. P.141

    https://doi.org/10.1016/j.compfluid.2013.07.011 [Citations: 52]
  76. A New Hllem-Type Riemann Solver for Compressible Multi-phase Flows with Surface Tension

    Nguyen, Nguyen T | Dumbser, Michael

    2015 International Conference on Advanced Computing and Applications (ACOMP), (2015), P.112

    https://doi.org/10.1109/ACOMP.2015.22 [Citations: 0]
  77. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    Daude, F. | Galon, P.

    Journal of Computational Physics, Vol. 362 (2018), Iss. P.375

    https://doi.org/10.1016/j.jcp.2018.01.055 [Citations: 24]
  78. Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws

    Dumbser, Michael

    Computer Methods in Applied Mechanics and Engineering, Vol. 280 (2014), Iss. P.57

    https://doi.org/10.1016/j.cma.2014.07.019 [Citations: 36]
  79. Hyperbolic models for the spread of epidemics on networks: kinetic description and numerical methods

    Bertaglia, Giulia | Pareschi, Lorenzo

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 2 P.381

    https://doi.org/10.1051/m2an/2020082 [Citations: 32]
  80. A global multiscale mathematical model for the human circulation with emphasis on the venous system

    Müller, Lucas O. | Toro, Eleuterio F.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 30 (2014), Iss. 7 P.681

    https://doi.org/10.1002/cnm.2622 [Citations: 174]
  81. A path-conservative finite volume scheme for compressible multi-phase flows with surface tension

    Nguyen, Nguyen T. | Dumbser, Michael

    Applied Mathematics and Computation, Vol. 271 (2015), Iss. P.959

    https://doi.org/10.1016/j.amc.2015.09.026 [Citations: 8]
  82. A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions

    Glenis, V. | Kutija, V. | Kilsby, C.G.

    Environmental Modelling & Software, Vol. 109 (2018), Iss. P.272

    https://doi.org/10.1016/j.envsoft.2018.07.018 [Citations: 83]
  83. Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes

    Gaburro, Elena | Dumbser, Michael | Castro, Manuel J.

    Computers & Fluids, Vol. 159 (2017), Iss. P.254

    https://doi.org/10.1016/j.compfluid.2017.09.022 [Citations: 33]
  84. Multiscale Constitutive Framework of One-Dimensional Blood Flow Modeling: Asymptotic Limits and Numerical Methods

    Bertaglia, Giulia | Pareschi, Lorenzo

    Multiscale Modeling & Simulation, Vol. 21 (2023), Iss. 3 P.1237

    https://doi.org/10.1137/23M1554230 [Citations: 0]
  85. A well balanced diffuse interface method for complex nonhydrostatic free surface flows

    Gaburro, Elena | Castro, Manuel J. | Dumbser, Michael

    Computers & Fluids, Vol. 175 (2018), Iss. P.180

    https://doi.org/10.1016/j.compfluid.2018.08.013 [Citations: 27]
  86. A Computational Model for the Dynamics of Cerebrospinal Fluid in the Spinal Subarachnoid Space

    Toro, Eleuterio F. | Thornber, Ben | Zhang, Qinghui | Scoz, Alessia | Contarino, Christian

    Journal of Biomechanical Engineering, Vol. 141 (2019), Iss. 1

    https://doi.org/10.1115/1.4041551 [Citations: 5]
  87. Application of Osher and PRICE-C schemes to solve compressible isothermal two-fluid models of two-phase flow

    Shekari, Younes | Hajidavalloo, Ebrahim

    Computers & Fluids, Vol. 86 (2013), Iss. P.363

    https://doi.org/10.1016/j.compfluid.2013.07.018 [Citations: 8]
  88. High-Order and High Accurate CFD Methods and Their Applications for Complex Grid Problems

    Deng, Xiaogang | Mao, Meiliang | Tu, Guohua | Zhang, Hanxin | Zhang, Yifeng

    Communications in Computational Physics, Vol. 11 (2012), Iss. 4 P.1081

    https://doi.org/10.4208/cicp.100510.150511s [Citations: 59]
  89. Non-Newtonian Fluid Mechanics and Complex Flows

    Lectures on Hyperbolic Equations and Their Numerical Approximation

    Toro, Eleuterio F.

    2018

    https://doi.org/10.1007/978-3-319-74796-5_3 [Citations: 2]
  90. Low-dissipation centred schemes for hyperbolic equations in conservative and non-conservative form

    Toro, E.F. | Saggiorato, B. | Tokareva, S. | Hidalgo, A.

    Journal of Computational Physics, Vol. 416 (2020), Iss. P.109545

    https://doi.org/10.1016/j.jcp.2020.109545 [Citations: 12]
  91. Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state

    Lee, Bok Jik | Toro, Eleuterio F. | Castro, Cristóbal E. | Nikiforakis, Nikolaos

    Journal of Computational Physics, Vol. 246 (2013), Iss. P.165

    https://doi.org/10.1016/j.jcp.2013.03.046 [Citations: 26]
  92. Numerical methods for hydraulic transients in visco-elastic pipes

    Bertaglia, Giulia | Ioriatti, Matteo | Valiani, Alessandro | Dumbser, Michael | Caleffi, Valerio

    Journal of Fluids and Structures, Vol. 81 (2018), Iss. P.230

    https://doi.org/10.1016/j.jfluidstructs.2018.05.004 [Citations: 40]
  93. Central Weighted ENO Schemes for Hyperbolic Conservation Laws on Fixed and Moving Unstructured Meshes

    Dumbser, Michael | Boscheri, Walter | Semplice, Matteo | Russo, Giovanni

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 6 P.A2564

    https://doi.org/10.1137/17M1111036 [Citations: 75]
  94. DOT-type schemes for hybrid hyperbolic problems arising from free-surface, mobile-bed, shallow-flow models

    Zugliani, Daniel | Rosatti, Giorgio

    Journal of Computational Physics, Vol. 507 (2024), Iss. P.112975

    https://doi.org/10.1016/j.jcp.2024.112975 [Citations: 0]
  95. Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model

    Bertaglia, Giulia | Caleffi, Valerio | Pareschi, Lorenzo | Valiani, Alessandro

    Journal of Computational Physics, Vol. 430 (2021), Iss. P.110102

    https://doi.org/10.1016/j.jcp.2020.110102 [Citations: 14]
  96. A new smoothed particle hydrodynamics method based on high-order moving-least-square targeted essentially non-oscillatory scheme for compressible flows

    Gao, Tianrun | Liang, Tian | Fu, Lin

    Journal of Computational Physics, Vol. 489 (2023), Iss. P.112270

    https://doi.org/10.1016/j.jcp.2023.112270 [Citations: 11]
  97. Recent Advances in Numerical Methods for Hyperbolic PDE Systems

    Incomplete Riemann Solvers Based on Functional Approximations to the Absolute Value Function

    Gallardo, José M. | Castro, Manuel J. | Marquina, Antonio

    2021

    https://doi.org/10.1007/978-3-030-72850-2_1 [Citations: 0]
  98. Theory, Numerics and Applications of Hyperbolic Problems I

    Jacobian-Free Incomplete Riemann Solvers

    Castro, Manuel J. | Gallardo, José M. | Marquina, Antonio

    2018

    https://doi.org/10.1007/978-3-319-91545-6_24 [Citations: 0]
  99. Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure

    Tavelli, Maurizio | Chiocchetti, Simone | Romenski, Evgeniy | Gabriel, Alice-Agnes | Dumbser, Michael

    Journal of Computational Physics, Vol. 422 (2020), Iss. P.109758

    https://doi.org/10.1016/j.jcp.2020.109758 [Citations: 21]
  100. Approximate Osher–Solomon schemes for hyperbolic systems

    Castro, Manuel J. | Gallardo, José M. | Marquina, Antonio

    Applied Mathematics and Computation, Vol. 272 (2016), Iss. P.347

    https://doi.org/10.1016/j.amc.2015.06.104 [Citations: 15]
  101. Computational Algorithms for Shallow Water Equations

    Approximate Riemann Solvers

    Toro, Eleuterio F.

    2024

    https://doi.org/10.1007/978-3-031-61395-1_11 [Citations: 0]
  102. A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws

    Dumbser, Michael | Zanotti, Olindo | Loubère, Raphaël | Diot, Steven

    Journal of Computational Physics, Vol. 278 (2014), Iss. P.47

    https://doi.org/10.1016/j.jcp.2014.08.009 [Citations: 259]
  103. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Zanotti, Olindo | Dumbser, Michael

    Computational Astrophysics and Cosmology, Vol. 3 (2016), Iss. 1

    https://doi.org/10.1186/s40668-015-0014-x [Citations: 35]
  104. Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting

    Zanotti, Olindo | Fambri, Francesco | Dumbser, Michael | Hidalgo, Arturo

    Computers & Fluids, Vol. 118 (2015), Iss. P.204

    https://doi.org/10.1016/j.compfluid.2015.06.020 [Citations: 118]
  105. A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian–Eulerian Schemes on Moving Unstructured Meshes with Topology Change

    Gaburro, Elena

    Archives of Computational Methods in Engineering, Vol. 28 (2021), Iss. 3 P.1249

    https://doi.org/10.1007/s11831-020-09411-7 [Citations: 21]
  106. A novel numerical flux for the 3D Euler equations with general equation of state

    Toro, Eleuterio F. | Castro, Cristóbal E. | Lee, Bok Jik

    Journal of Computational Physics, Vol. 303 (2015), Iss. P.80

    https://doi.org/10.1016/j.jcp.2015.09.037 [Citations: 25]
  107. High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes

    Boscheri, Walter | Dumbser, Michael | Zanotti, Olindo

    Journal of Computational Physics, Vol. 291 (2015), Iss. P.120

    https://doi.org/10.1016/j.jcp.2015.02.052 [Citations: 26]
  108. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    Dumbser, Michael | Peshkov, Ilya | Romenski, Evgeniy | Zanotti, Olindo

    Journal of Computational Physics, Vol. 314 (2016), Iss. P.824

    https://doi.org/10.1016/j.jcp.2016.02.015 [Citations: 138]
  109. A universal centred high-order method based on implicit Taylor series expansion with fast second order evolution of spatial derivatives

    Montecinos, Gino I.

    Journal of Computational Physics, Vol. 443 (2021), Iss. P.110535

    https://doi.org/10.1016/j.jcp.2021.110535 [Citations: 5]
  110. A Stability Analysis of Hybrid Schemes to Cure Shock Instability

    Shen, Zhijun | Yan, Wei | Yuan, Guangwei

    Communications in Computational Physics, Vol. 15 (2014), Iss. 5 P.1320

    https://doi.org/10.4208/cicp.210513.091013a [Citations: 29]
  111. An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes

    Boscheri, W. | Dumbser, M.

    Journal of Scientific Computing, Vol. 66 (2016), Iss. 1 P.240

    https://doi.org/10.1007/s10915-015-0019-2 [Citations: 15]
  112. Multidimensional Riemann problem with self-similar internal structure. Part I – Application to hyperbolic conservation laws on structured meshes

    Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 277 (2014), Iss. P.163

    https://doi.org/10.1016/j.jcp.2014.07.053 [Citations: 94]
  113. Shear shock formation in incompressible viscoelastic solids

    Berjamin, H. | Chockalingam, S.

    Wave Motion, Vol. 110 (2022), Iss. P.102899

    https://doi.org/10.1016/j.wavemoti.2022.102899 [Citations: 8]
  114. An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice

    Guo, S. | Feng, Y. | Jacob, J. | Renard, F. | Sagaut, P.

    Journal of Computational Physics, Vol. 418 (2020), Iss. P.109570

    https://doi.org/10.1016/j.jcp.2020.109570 [Citations: 55]
  115. A splitting scheme for the coupled Saint-Venant-Exner model

    Siviglia, A. | Vanzo, D. | Toro, E.F.

    Advances in Water Resources, Vol. 159 (2022), Iss. P.104062

    https://doi.org/10.1016/j.advwatres.2021.104062 [Citations: 9]
  116. An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics

    Boscheri, Walter

    International Journal for Numerical Methods in Fluids, Vol. 84 (2017), Iss. 2 P.76

    https://doi.org/10.1002/fld.4342 [Citations: 7]
  117. High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics

    Boscheri, W. | Dumbser, M. | Balsara, D. S.

    International Journal for Numerical Methods in Fluids, Vol. 76 (2014), Iss. 10 P.737

    https://doi.org/10.1002/fld.3947 [Citations: 63]
  118. A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations

    Dumbser, Michael | Casulli, Vincenzo

    Applied Mathematics and Computation, Vol. 219 (2013), Iss. 15 P.8057

    https://doi.org/10.1016/j.amc.2013.02.041 [Citations: 25]
  119. High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems

    Dumbser, Michael | Hidalgo, Arturo | Zanotti, Olindo

    Computer Methods in Applied Mechanics and Engineering, Vol. 268 (2014), Iss. P.359

    https://doi.org/10.1016/j.cma.2013.09.022 [Citations: 78]
  120. A mathematical framework for modelling rock–ice avalanches

    Sansone, Stefania | Zugliani, D. | Rosatti, G.

    Journal of Fluid Mechanics, Vol. 919 (2021), Iss.

    https://doi.org/10.1017/jfm.2021.348 [Citations: 13]
  121. A novel structure preserving semi‐implicit finite volume method for viscous and resistive magnetohydrodynamics

    Fambri, Francesco

    International Journal for Numerical Methods in Fluids, Vol. 93 (2021), Iss. 12 P.3447

    https://doi.org/10.1002/fld.5041 [Citations: 17]
  122. High order direct Arbitrary-Lagrangian-Eulerian (ALE) PP schemes with WENO Adaptive-Order reconstruction on unstructured meshes

    Boscheri, Walter | Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 398 (2019), Iss. P.108899

    https://doi.org/10.1016/j.jcp.2019.108899 [Citations: 24]
  123. High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics

    Dumbser, Michael | Peshkov, Ilya | Romenski, Evgeniy | Zanotti, Olindo

    Journal of Computational Physics, Vol. 348 (2017), Iss. P.298

    https://doi.org/10.1016/j.jcp.2017.07.020 [Citations: 56]
  124. A divergence‐free semi‐implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics

    Dumbser, M. | Balsara, D.S. | Tavelli, M. | Fambri, F.

    International Journal for Numerical Methods in Fluids, Vol. 89 (2019), Iss. 1-2 P.16

    https://doi.org/10.1002/fld.4681 [Citations: 48]
  125. A generalized Rusanov method for the Baer‐Nunziato equations with application to DDT processes in condensed porous explosives

    Menshov, Igor | Serezhkin, Alexey

    International Journal for Numerical Methods in Fluids, Vol. 86 (2018), Iss. 5 P.346

    https://doi.org/10.1002/fld.4419 [Citations: 14]