Velocity-Based Moving Mesh Methods for Nonlinear Partial Differential Equations

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 3 : pp. 509–576

Abstract

This article describes a number of velocity-based moving mesh numerical methods for multidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.201010.040511a

Communications in Computational Physics, Vol. 10 (2011), Iss. 3 : pp. 509–576

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    68

Keywords:   

  1. Moving mesh method with variational multiscale finite element method for convection–diffusion–reaction equations

    Zhang, Xiaohua | Xu, Xinmeng

    Engineering with Computers, Vol. 40 (2024), Iss. 3 P.1943

    https://doi.org/10.1007/s00366-023-01899-4 [Citations: 0]
  2. A velocity-based moving mesh virtual element method

    Wells, H. | Hubbard, M.E. | Cangiani, A.

    Computers & Mathematics with Applications, Vol. 155 (2024), Iss. P.110

    https://doi.org/10.1016/j.camwa.2023.12.005 [Citations: 1]
  3. A Moving Mesh Method for Kinetic/Hydrodynamic Coupling

    Hu, Zhicheng | Wang, Heyu

    Advances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 06 P.685

    https://doi.org/10.4208/aamm.12-12S01 [Citations: 2]
  4. A moving-mesh finite difference scheme that preserves scaling symmetry for a class of nonlinear diffusion problems

    Baines, M.J. | Sarahs, N.

    Journal of Computational and Applied Mathematics, Vol. 340 (2018), Iss. P.380

    https://doi.org/10.1016/j.cam.2018.02.040 [Citations: 3]
  5. High-order compact schemes for semilinear parabolic moving boundary problems

    Li, Tingyue | Xu, Dinghua | Zhang, Qifeng

    Applied Numerical Mathematics, Vol. 161 (2021), Iss. P.452

    https://doi.org/10.1016/j.apnum.2020.12.004 [Citations: 1]
  6. A finite difference moving mesh method based on conservation for moving boundary problems

    Lee, T.E. | Baines, M.J. | Langdon, S.

    Journal of Computational and Applied Mathematics, Vol. 288 (2015), Iss. P.1

    https://doi.org/10.1016/j.cam.2015.03.032 [Citations: 26]
  7. A Quasi-Conservative Discontinuous Galerkin Method for Multi-component Flows Using the Non-oscillatory Kinetic Flux II: ALE Framework

    Luo, Dongmi | Li, Shiyi | Huang, Weizhang | Qiu, Jianxian | Chen, Yibing

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 1

    https://doi.org/10.1007/s10915-021-01732-4 [Citations: 7]
  8. Universal meshes for smooth surfaces with no boundary in three dimensions

    Kabaria, Hardik | Lew, Adrian J.

    International Journal for Numerical Methods in Engineering, Vol. 110 (2017), Iss. 2 P.133

    https://doi.org/10.1002/nme.5350 [Citations: 5]
  9. Moving Finite Element Simulations for Reaction-Diffusion Systems

    Hu, Guanghui | Qiao, Zhonghua | Tang, Tao

    Advances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 03 P.365

    https://doi.org/10.4208/aamm.10-m11180 [Citations: 20]
  10. Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton's iteration

    Zhang, Fei | Huang, Weizhang | Li, Xianping | Zhang, Shicheng

    Journal of Computational Physics, Vol. 356 (2018), Iss. P.127

    https://doi.org/10.1016/j.jcp.2017.11.033 [Citations: 21]
  11. Arbitrary Lagrangian–Eulerian simulations of highly electrically charged micro-droplet Coulomb explosion deformation pathways

    Radcliffe, Alastair

    International Journal of Modeling, Simulation, and Scientific Computing, Vol. 07 (2016), Iss. 03 P.1650016

    https://doi.org/10.1142/S1793962316500161 [Citations: 2]
  12. A Numerical Method for Multispecies Populations in a Moving Domain Using Combined Masses

    Baines, M. J. | Christou, Katerina

    Mathematics, Vol. 10 (2022), Iss. 7 P.1124

    https://doi.org/10.3390/math10071124 [Citations: 1]
  13. Space–time residual distribution on moving meshes

    Hubbard, M.E. | Ricchiuto, M. | Sármány, D.

    Computers & Mathematics with Applications, Vol. 79 (2020), Iss. 5 P.1561

    https://doi.org/10.1016/j.camwa.2019.09.019 [Citations: 4]
  14. A Pseudo-Stokes Mesh Motion Algorithm

    Noleto, Luciano Gonçalves | Barcelos, Manuel N.D. | Brasil, Antonio C. P.

    Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 2 P.194

    https://doi.org/10.4208/aamm.11-m1186 [Citations: 0]
  15. Implementing Heterogeneous Crystal Surface Reactivity in Reactive Transport Simulations: The Example of Calcite Dissolution

    Karimzadeh, Lotfollah | Fischer, Cornelius

    ACS Earth and Space Chemistry, Vol. 5 (2021), Iss. 9 P.2408

    https://doi.org/10.1021/acsearthspacechem.1c00099 [Citations: 6]
  16. A novel moving mesh method for solving fluid dynamic equations

    Duan, Xianbao | Qin, Ling | Lu, Junxiang

    AIP Advances, Vol. 10 (2020), Iss. 8

    https://doi.org/10.1063/5.0014413 [Citations: 1]
  17. A Well-Balanced Moving Mesh Discontinuous Galerkin Method for the Ripa Model on Triangular Meshes

    Huang, Weizhang | Li, Ruo | Qiu, Jianxian | Zhang, Min

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4134904 [Citations: 0]
  18. An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics

    He, Peng | Tang, Huazhong

    Computers & Fluids, Vol. 60 (2012), Iss. P.1

    https://doi.org/10.1016/j.compfluid.2012.02.024 [Citations: 23]
  19. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    Cheng, Jun-Bo | Huang, Weizhang | Jiang, Song | Tian, Baolin

    Journal of Computational Physics, Vol. 349 (2017), Iss. P.137

    https://doi.org/10.1016/j.jcp.2017.08.018 [Citations: 6]
  20. A moving-point approach to model shallow ice sheets: a study case with radially symmetrical ice sheets

    Bonan, B. | Baines, M. J. | Nichols, N. K. | Partridge, D.

    The Cryosphere, Vol. 10 (2016), Iss. 1 P.1

    https://doi.org/10.5194/tc-10-1-2016 [Citations: 7]
  21. An ALE-FE method for two-phase flows with dynamic boundaries

    Anjos, G.R. | Mangiavacchi, N. | Thome, J.R.

    Computer Methods in Applied Mechanics and Engineering, Vol. 362 (2020), Iss. P.112820

    https://doi.org/10.1016/j.cma.2020.112820 [Citations: 9]
  22. Semi-implicit front capturing schemes for the degenerate nonlinear radiative diffusion equation

    Tang, Min | Zhang, Xiaojiang

    Journal of Computational Physics, Vol. 436 (2021), Iss. P.110290

    https://doi.org/10.1016/j.jcp.2021.110290 [Citations: 5]
  23. Combining Digital Twin and Machine Learning for the Fused Filament Fabrication Process

    Butt, Javaid | Mohaghegh, Vahaj

    Metals, Vol. 13 (2022), Iss. 1 P.24

    https://doi.org/10.3390/met13010024 [Citations: 8]
  24. Comoving mesh method for certain classes of moving boundary problems

    Sunayama, Yosuke | Kimura, Masato | Rabago, Julius Fergy T.

    Japan Journal of Industrial and Applied Mathematics, Vol. 39 (2022), Iss. 3 P.973

    https://doi.org/10.1007/s13160-022-00524-z [Citations: 1]
  25. An Adaptive Moving Mesh Finite Element Solution of the Regularized Long Wave Equation

    Lu, Changna | Huang, Weizhang | Qiu, Jianxian

    Journal of Scientific Computing, Vol. 74 (2018), Iss. 1 P.122

    https://doi.org/10.1007/s10915-017-0427-6 [Citations: 17]
  26. Robust well-balanced method with flow resistance terms for accurate wetting and drying modeling in shallow water simulations

    Lu, Lingjiang | Chen, Yongcan | Li, Manjie | Zhang, Hong | Liu, Zhaowei

    Advances in Water Resources, Vol. 191 (2024), Iss. P.104760

    https://doi.org/10.1016/j.advwatres.2024.104760 [Citations: 0]
  27. Data assimilation using adaptive, non-conservative, moving mesh models

    Aydoğdu, Ali | Carrassi, Alberto | Guider, Colin T. | Jones, Chris K. R. T | Rampal, Pierre

    Nonlinear Processes in Geophysics, Vol. 26 (2019), Iss. 3 P.175

    https://doi.org/10.5194/npg-26-175-2019 [Citations: 9]
  28. A study on moving mesh finite element solution of the porous medium equation

    Ngo, Cuong | Huang, Weizhang

    Journal of Computational Physics, Vol. 331 (2017), Iss. P.357

    https://doi.org/10.1016/j.jcp.2016.11.045 [Citations: 30]
  29. A Conservative Finite Element ALE Scheme for Mass-Conservative Reaction-Diffusion Equations on Evolving Two-Dimensional Domains

    Mackenzie, John | Rowlatt, Christopher | Insall, Robert

    SIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 1 P.B132

    https://doi.org/10.1137/19M1298585 [Citations: 8]
  30. A well-balanced moving mesh discontinuous Galerkin method for the Ripa model on triangular meshes

    Huang, Weizhang | Li, Ruo | Qiu, Jianxian | Zhang, Min

    Journal of Computational Physics, Vol. 487 (2023), Iss. P.112147

    https://doi.org/10.1016/j.jcp.2023.112147 [Citations: 2]
  31. Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique

    Bao, Gang | Hu, Guanghui | Liu, Di

    Journal of Scientific Computing, Vol. 55 (2013), Iss. 2 P.372

    https://doi.org/10.1007/s10915-012-9636-1 [Citations: 19]
  32. Superfast Nonlinear Diffusion: Capillary Transport in Particulate Porous Media

    Lukyanov, A. V. | Sushchikh, M. M | Baines, M. J. | Theofanous, T. G.

    Physical Review Letters, Vol. 109 (2012), Iss. 21

    https://doi.org/10.1103/PhysRevLett.109.214501 [Citations: 29]
  33. A quasi-Lagrangian moving mesh discontinuous Galerkin method for hyperbolic conservation laws

    Luo, Dongmi | Huang, Weizhang | Qiu, Jianxian

    Journal of Computational Physics, Vol. 396 (2019), Iss. P.544

    https://doi.org/10.1016/j.jcp.2019.06.061 [Citations: 14]
  34. Analytical solution of a double moving boundary problem for nonlinear flows in one-dimensional semi-infinite long porous media with low permeability

    Liu, Wen-Chao | Yao, Jun | Chen, Zhang-Xin

    Acta Mechanica Sinica, Vol. 30 (2014), Iss. 1 P.50

    https://doi.org/10.1007/s10409-013-0091-5 [Citations: 12]
  35. A moving mesh approach for modelling avascular tumour growth

    Lee, T.E. | Baines, M.J. | Langdon, S. | Tindall, M.J.

    Applied Numerical Mathematics, Vol. 72 (2013), Iss. P.99

    https://doi.org/10.1016/j.apnum.2013.06.001 [Citations: 8]
  36. Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems

    DiPietro, Kelsey L. | Haynes, Ronald D. | Huang, Weizhang | Lindsay, Alan E. | Yu, Yufei

    Journal of Computational Physics, Vol. 375 (2018), Iss. P.763

    https://doi.org/10.1016/j.jcp.2018.08.053 [Citations: 4]
  37. Moving mesh method for direct numerical simulation of two-phase flow with phase change

    Gros, E. | Anjos, G. | Thome, J.

    Applied Mathematics and Computation, Vol. 339 (2018), Iss. P.636

    https://doi.org/10.1016/j.amc.2018.07.052 [Citations: 5]
  38. Adaptive moving grid methods for two-phase flow in porous media

    Dong, Hao | Qiao, Zhonghua | Sun, Shuyu | Tang, Tao

    Journal of Computational and Applied Mathematics, Vol. 265 (2014), Iss. P.139

    https://doi.org/10.1016/j.cam.2013.09.027 [Citations: 14]
  39. A Moving-Mesh Finite-Difference Method for Segregated Two-Phase Competition-Diffusion

    Baines, Michael John | Christou, Katerina

    Mathematics, Vol. 9 (2021), Iss. 4 P.386

    https://doi.org/10.3390/math9040386 [Citations: 2]
  40. Data assimilation for moving mesh methods with an application to ice sheet modelling

    Bonan, Bertrand | Nichols, Nancy K. | Baines, Michael J. | Partridge, Dale

    Nonlinear Processes in Geophysics, Vol. 24 (2017), Iss. 3 P.515

    https://doi.org/10.5194/npg-24-515-2017 [Citations: 7]