Year: 2011
Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 867–881
Abstract
The dynamics of the Liesegang type pattern formation is investigated in a centrally symmetric two-dimensional setup. According to the observations in real experiments, the qualitative change of the dynamics is exhibited for slightly different initial conditions. Two kinds of chemical mechanisms are studied; in both cases the pattern formation is described using a phase separation model including the Cahn-Hilliard equations. For the numerical simulations we make use of an adaptive grid PDE method, which successfully deals with the computationally critical cases such as steep gradients in the concentration distribution and investigation of long time behavior. The numerical simulations show a good agreement with the real experiments.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.050510.031210a
Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 867–881
Published online: 2011-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 15
-
Detecting Two-Dimensional Fingering Patterns in a Non-Equilibrium PDE Model via Adaptive Moving Meshes
Zegeling, P. A.
Computational Mathematics and Mathematical Physics, Vol. 62 (2022), Iss. 8 P.1331
https://doi.org/10.1134/S0965542522080140 [Citations: 0] -
Adaptive moving grid methods for two-phase flow in porous media
Dong, Hao | Qiao, Zhonghua | Sun, Shuyu | Tang, TaoJournal of Computational and Applied Mathematics, Vol. 265 (2014), Iss. P.139
https://doi.org/10.1016/j.cam.2013.09.027 [Citations: 14] -
Nonmonotone Saturation Profiles for Hydrostatic Equilibrium in Homogeneous Porous Media
Hilfer, R. | Doster, F. | Zegeling, P.A.Vadose Zone Journal, Vol. 11 (2012), Iss. 3 P.vzj2012.0021
https://doi.org/10.2136/vzj2012.0021 [Citations: 17] -
Dispersion modeling of air pollutants in the atmosphere: a review
Leelőssy, Ádám | Molnár, Ferenc | Izsák, Ferenc | Havasi, Ágnes | Lagzi, István | Mészáros, RóbertOpen Geosciences, Vol. 6 (2014), Iss. 3
https://doi.org/10.2478/s13533-012-0188-6 [Citations: 81] -
A Moving Mesh Method for Kinetic/Hydrodynamic Coupling
Hu, Zhicheng | Wang, HeyuAdvances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 06 P.685
https://doi.org/10.4208/aamm.12-12S01 [Citations: 2] -
Phase-Field Modeling of Biomineralization in Mollusks and Corals: Microstructure vs Formation Mechanism
Gránásy, László | Rátkai, László | Tóth, Gyula I. | Gilbert, Pupa U. P. A. | Zlotnikov, Igor | Pusztai, TamásJACS Au, Vol. 1 (2021), Iss. 7 P.1014
https://doi.org/10.1021/jacsau.1c00026 [Citations: 12] -
Non-monotonic Travelling Wave Fronts in a System of Fractional Flow Equations from Porous Media
Hönig, O. | Zegeling, P. A. | Doster, F. | Hilfer, R.Transport in Porous Media, Vol. 114 (2016), Iss. 2 P.309
https://doi.org/10.1007/s11242-015-0618-2 [Citations: 2] -
Numerical Geometry, Grid Generation and Scientific Computing
Adaptive Grids for Non-monotone Waves and Instabilities in a Non-equilibrium PDE Model
Zegeling, Paul A.
2021
https://doi.org/10.1007/978-3-030-76798-3_11 [Citations: 0] -
Higher Order Nonuniform Grids for Singularly Perturbed Convection-Diffusion-Reaction Problems
Zegeling, Paul AndriesComputational Mathematics and Mathematical Physics, Vol. 59 (2019), Iss. 12 P.2057
https://doi.org/10.1134/S0965542519120108 [Citations: 0] -
Regularization of the Ostwald supersaturation model for Liesegang bands
Duley, J. M. | Fowler, A. C. | Moyles, I. R. | O'Brien, S. B. G.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 475 (2019), Iss. 2228 P.20190154
https://doi.org/10.1098/rspa.2019.0154 [Citations: 2] -
On the Keller–Rubinow model for Liesegang ring formation
Duley, J. M. | Fowler, A. C. | Moyles, I. R. | O'Brien, S. B. G.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 473 (2017), Iss. 2205 P.20170128
https://doi.org/10.1098/rspa.2017.0128 [Citations: 8] -
Numerical Geometry, Grid Generation and Scientific Computing
Sixth-Order Adaptive Non-uniform Grids for Singularly Perturbed Boundary Value Problems
Iqbal, Sehar | Zegeling, Paul Andries2019
https://doi.org/10.1007/978-3-030-23436-2_8 [Citations: 0]