Transition of Liesegang Precipitation Systems: Simulations with an Adaptive Grid PDE Method

Transition of Liesegang Precipitation Systems: Simulations with an Adaptive Grid PDE Method

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 867–881

Abstract

The dynamics of the Liesegang type pattern formation is investigated in a centrally symmetric two-dimensional setup. According to the observations in real experiments, the qualitative change of the dynamics is exhibited for slightly different initial conditions. Two kinds of chemical mechanisms are studied; in both cases the pattern formation is described using a phase separation model including the Cahn-Hilliard equations. For the numerical simulations we make use of an adaptive grid PDE method, which successfully deals with the computationally critical cases such as steep gradients in the concentration distribution and investigation of long time behavior. The numerical simulations show a good agreement with the real experiments.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.050510.031210a

Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 867–881

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:   

  1. Detecting Two-Dimensional Fingering Patterns in a Non-Equilibrium PDE Model via Adaptive Moving Meshes

    Zegeling, P. A.

    Computational Mathematics and Mathematical Physics, Vol. 62 (2022), Iss. 8 P.1331

    https://doi.org/10.1134/S0965542522080140 [Citations: 0]
  2. Adaptive moving grid methods for two-phase flow in porous media

    Dong, Hao | Qiao, Zhonghua | Sun, Shuyu | Tang, Tao

    Journal of Computational and Applied Mathematics, Vol. 265 (2014), Iss. P.139

    https://doi.org/10.1016/j.cam.2013.09.027 [Citations: 14]
  3. Nonmonotone Saturation Profiles for Hydrostatic Equilibrium in Homogeneous Porous Media

    Hilfer, R. | Doster, F. | Zegeling, P.A.

    Vadose Zone Journal, Vol. 11 (2012), Iss. 3 P.vzj2012.0021

    https://doi.org/10.2136/vzj2012.0021 [Citations: 17]
  4. Dispersion modeling of air pollutants in the atmosphere: a review

    Leelőssy, Ádám | Molnár, Ferenc | Izsák, Ferenc | Havasi, Ágnes | Lagzi, István | Mészáros, Róbert

    Open Geosciences, Vol. 6 (2014), Iss. 3

    https://doi.org/10.2478/s13533-012-0188-6 [Citations: 81]
  5. A Moving Mesh Method for Kinetic/Hydrodynamic Coupling

    Hu, Zhicheng | Wang, Heyu

    Advances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 06 P.685

    https://doi.org/10.4208/aamm.12-12S01 [Citations: 2]
  6. Phase-Field Modeling of Biomineralization in Mollusks and Corals: Microstructure vs Formation Mechanism

    Gránásy, László | Rátkai, László | Tóth, Gyula I. | Gilbert, Pupa U. P. A. | Zlotnikov, Igor | Pusztai, Tamás

    JACS Au, Vol. 1 (2021), Iss. 7 P.1014

    https://doi.org/10.1021/jacsau.1c00026 [Citations: 12]
  7. Non-monotonic Travelling Wave Fronts in a System of Fractional Flow Equations from Porous Media

    Hönig, O. | Zegeling, P. A. | Doster, F. | Hilfer, R.

    Transport in Porous Media, Vol. 114 (2016), Iss. 2 P.309

    https://doi.org/10.1007/s11242-015-0618-2 [Citations: 2]
  8. Numerical Geometry, Grid Generation and Scientific Computing

    Adaptive Grids for Non-monotone Waves and Instabilities in a Non-equilibrium PDE Model

    Zegeling, Paul A.

    2021

    https://doi.org/10.1007/978-3-030-76798-3_11 [Citations: 0]
  9. Higher Order Nonuniform Grids for Singularly Perturbed Convection-Diffusion-Reaction Problems

    Zegeling, Paul Andries

    Computational Mathematics and Mathematical Physics, Vol. 59 (2019), Iss. 12 P.2057

    https://doi.org/10.1134/S0965542519120108 [Citations: 0]
  10. Regularization of the Ostwald supersaturation model for Liesegang bands

    Duley, J. M. | Fowler, A. C. | Moyles, I. R. | O'Brien, S. B. G.

    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 475 (2019), Iss. 2228 P.20190154

    https://doi.org/10.1098/rspa.2019.0154 [Citations: 2]
  11. On the Keller–Rubinow model for Liesegang ring formation

    Duley, J. M. | Fowler, A. C. | Moyles, I. R. | O'Brien, S. B. G.

    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 473 (2017), Iss. 2205 P.20170128

    https://doi.org/10.1098/rspa.2017.0128 [Citations: 8]
  12. Numerical Geometry, Grid Generation and Scientific Computing

    Sixth-Order Adaptive Non-uniform Grids for Singularly Perturbed Boundary Value Problems

    Iqbal, Sehar | Zegeling, Paul Andries

    2019

    https://doi.org/10.1007/978-3-030-23436-2_8 [Citations: 0]