Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme

Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 940–978

Abstract

The aim of the present work is to develop a general formalism to derive staggered discretizations for Lagrangian hydrodynamics on two-dimensional unstructured grids. To this end, we make use of the compatible discretization that has been initially introduced by E. J. Caramana et al., in J. Comput. Phys., 146 (1998). Namely, momentum equation is discretized by means of subcell forces and specific internal energy equation is obtained using total energy conservation. The main contribution of this work lies in the fact that the subcell force is derived invoking Galilean invariance and thermodynamic consistency. That is, we deduce a general form of the sub-cell force so that a cell entropy inequality is satisfied. The subcell force writes as a pressure contribution plus a tensorial viscous contribution which is proportional to the difference between the nodal velocity and the cell-centered velocity. This cell-centered velocity is a supplementary degree of freedom that is solved by means of a cell-centered approximate Riemann solver. To satisfy the second law of thermodynamics, the local subcell tensor involved in the viscous part of the subcell force must be symmetric positive definite. This subcell tensor is the cornerstone of the scheme. One particular expression of this tensor is given. A high-order extension of this discretization is provided. Numerical tests are presented in order to assess the efficiency of this approach. The results obtained for various representative configurations of one- and two-dimensional compressible fluid flows show the robustness and the accuracy of this scheme.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.170310.251110a

Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 940–978

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    39

Keywords:   

  1. Formulation of hybrid nodal solver based on directional effect of wave propagation in a cell-centered Lagrangian scheme

    Xu, Chunyuan | Shen, Zhijun | Zeng, Qinghong

    Computers & Fluids, Vol. 285 (2024), Iss. P.106451

    https://doi.org/10.1016/j.compfluid.2024.106451 [Citations: 0]
  2. A fourth-order Lagrangian discontinuous Galerkin method using a hierarchical orthogonal basis on curvilinear grids

    Liu, Xiaodong | Morgan, Nathaniel R. | Lieberman, Evan J. | Burton, Donald E.

    Journal of Computational and Applied Mathematics, Vol. 404 (2022), Iss. P.113890

    https://doi.org/10.1016/j.cam.2021.113890 [Citations: 9]
  3. Sub-grid properties and artificial viscous stresses in staggered-mesh schemes

    Williams, R.J.R.

    Journal of Computational Physics, Vol. 374 (2018), Iss. P.413

    https://doi.org/10.1016/j.jcp.2018.07.012 [Citations: 3]
  4. A local tensor type artificial viscosity for two-dimensional Lagrangian staggered grid hydrodynamics

    Qian, Jianzhen | Pan, Hao | Wang, Pei

    Journal of Computational Physics, Vol. 430 (2021), Iss. P.110038

    https://doi.org/10.1016/j.jcp.2020.110038 [Citations: 2]
  5. Symmetry Preservation by a Compatible Staggered Lagrangian Scheme Using the Control-Volume Discretization Method in <i>r</i>- <i>z</i> Coordinates

    Chunyuan, Xu | Zeng, Qinghong

    SSRN Electronic Journal , Vol. (2021), Iss.

    https://doi.org/10.2139/ssrn.3991783 [Citations: 0]
  6. A Lagrangian staggered grid Godunov-like approach for hydrodynamics

    Morgan, Nathaniel R. | Lipnikov, Konstantin N. | Burton, Donald E. | Kenamond, Mark A.

    Journal of Computational Physics, Vol. 259 (2014), Iss. P.568

    https://doi.org/10.1016/j.jcp.2013.12.013 [Citations: 53]
  7. A comparative study of 2 different momentum discretizations in context of Lagrangian discontinuous Galerkin hydrodynamic method for RZ axisymmetric coordinates

    Liu, Xiaodong

    2018 Fluid Dynamics Conference, (2018),

    https://doi.org/10.2514/6.2018-4269 [Citations: 0]
  8. A hybrid subcell-remapping algorithm for staggered multi-material arbitrary Lagrangian-Eulerian methods

    Yang, Haihua | Zhang, Ping

    Applied Mathematics and Mechanics, Vol. 40 (2019), Iss. 10 P.1487

    https://doi.org/10.1007/s10483-019-2523-5 [Citations: 1]
  9. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    Boscheri, Walter | Dumbser, Michael | Loubère, Raphaël | Maire, Pierre-Henri

    Journal of Computational Physics, Vol. 358 (2018), Iss. P.103

    https://doi.org/10.1016/j.jcp.2017.12.040 [Citations: 23]
  10. Finite-Volume Scheme for Multicomponent Compressible Flows on Unstructured Meshes in the Focus 3D Code

    Glazyrin, I. V. | Mikhailov, N. A.

    Computational Mathematics and Mathematical Physics, Vol. 61 (2021), Iss. 6 P.1015

    https://doi.org/10.1134/S096554252106004X [Citations: 1]
  11. Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods

    Morgan, Nathaniel R. | Liu, Xiaodong | Burton, Donald E.

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.35

    https://doi.org/10.1016/j.jcp.2018.06.008 [Citations: 15]
  12. A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations

    Cheng, Juan | Shu, Chi-Wang | Zeng, Qinghong

    Communications in Computational Physics, Vol. 12 (2012), Iss. 5 P.1307

    https://doi.org/10.4208/cicp.150311.090112a [Citations: 9]
  13. A 3D staggered Lagrangian scheme for ideal magnetohydrodynamics on unstructured meshes

    Xu, Xiao | Gao, Zhiming | Dai, Zihuan

    International Journal for Numerical Methods in Fluids, Vol. 90 (2019), Iss. 11 P.584

    https://doi.org/10.1002/fld.4736 [Citations: 6]
  14. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    Morgan, Nathaniel R. | Waltz, Jacob I. | Burton, Donald E. | Charest, Marc R. | Canfield, Thomas R. | Wohlbier, John G.

    Journal of Computational Physics, Vol. 281 (2015), Iss. P.614

    https://doi.org/10.1016/j.jcp.2014.10.048 [Citations: 21]
  15. Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian–Eulerian methods

    Kucharik, Milan | Shashkov, Mikhail

    Journal of Computational Physics, Vol. 258 (2014), Iss. P.268

    https://doi.org/10.1016/j.jcp.2013.10.050 [Citations: 60]
  16. On the Origins of Lagrangian Hydrodynamic Methods

    Morgan, Nathaniel R. | Archer, Billy J.

    Nuclear Technology, Vol. 207 (2021), Iss. sup1 P.S147

    https://doi.org/10.1080/00295450.2021.1913034 [Citations: 16]
  17. New directional vector limiters for discontinuous Galerkin methods

    Hajduk, Hennes | Kuzmin, Dmitri | Aizinger, Vadym

    Journal of Computational Physics, Vol. 384 (2019), Iss. P.308

    https://doi.org/10.1016/j.jcp.2019.01.032 [Citations: 15]
  18. Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR)

    Burton, D.E. | Morgan, N.R. | Carney, T.C. | Kenamond, M.A.

    Journal of Computational Physics, Vol. 299 (2015), Iss. P.229

    https://doi.org/10.1016/j.jcp.2015.06.041 [Citations: 42]
  19. A Lagrangian discontinuous Galerkin hydrodynamic method

    Liu, Xiaodong | Morgan, Nathaniel R. | Burton, Donald E.

    Computers & Fluids, Vol. 163 (2018), Iss. P.68

    https://doi.org/10.1016/j.compfluid.2017.12.007 [Citations: 41]
  20. A cell-centered Lagrangian discontinuous Galerkin method using WENO and HWENO limiter for compressible Euler equations in two dimensions

    Qing, Fang | Yu, Xijun | Jia, Zupeng | Li, Zhenzhen

    Computational and Applied Mathematics, Vol. 40 (2021), Iss. 6

    https://doi.org/10.1007/s40314-021-01575-7 [Citations: 8]
  21. Lagrangian discontinuous Galerkin hydrodynamic methods in axisymmetric coordinates

    Liu, Xiaodong | Morgan, Nathaniel R. | Burton, Donald E.

    Journal of Computational Physics, Vol. 373 (2018), Iss. P.253

    https://doi.org/10.1016/j.jcp.2018.06.073 [Citations: 24]
  22. Symmetry-preserving momentum remap for ALE hydrodynamics

    Velechovský, J | Kuchařík, M | Liska, R | Shashkov, M

    Journal of Physics: Conference Series, Vol. 454 (2013), Iss. P.012003

    https://doi.org/10.1088/1742-6596/454/1/012003 [Citations: 4]
  23. Entropy–viscosity method for the single material Euler equations in Lagrangian frame

    Guermond, Jean-Luc | Popov, Bojan | Tomov, Vladimir

    Computer Methods in Applied Mechanics and Engineering, Vol. 300 (2016), Iss. P.402

    https://doi.org/10.1016/j.cma.2015.11.009 [Citations: 28]
  24. Exploration of consistent numerical integration for a 2D Lagrangian discontinuous Galerkin hydrodynamic method

    Liu, Xiaodong | Morgan, Nathaniel R. | Burton, Donald

    AIAA Scitech 2019 Forum, (2019),

    https://doi.org/10.2514/6.2019-0644 [Citations: 1]
  25. Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates

    Cheng, Juan | Shu, Chi-Wang

    Journal of Computational Physics, Vol. 272 (2014), Iss. P.245

    https://doi.org/10.1016/j.jcp.2014.04.031 [Citations: 23]
  26. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics

    Dobrev, Veselin A. | Kolev, Tzanio V. | Rieben, Robert N.

    SIAM Journal on Scientific Computing, Vol. 34 (2012), Iss. 5 P.B606

    https://doi.org/10.1137/120864672 [Citations: 170]
  27. Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics

    Velechovský, J. | Kuchařík, M. | Liska, R. | Shashkov, M. | Váchal, P.

    Journal of Computational Physics, Vol. 255 (2013), Iss. P.590

    https://doi.org/10.1016/j.jcp.2013.08.037 [Citations: 14]
  28. A general computational framework for Lagrangian hydrodynamic scheme. I: Unification of staggered‐grid and cell‐centered methods

    Xu, Xihua

    International Journal for Numerical Methods in Fluids, Vol. 96 (2024), Iss. 9 P.1555

    https://doi.org/10.1002/fld.5313 [Citations: 0]
  29. A high-order vertex-centered quasi-Lagrangian discontinuous Galerkin method for compressible Euler equations in two-dimensions

    Liu, Liqi | Shen, Zhijun | Zeng, Qinghong | Jia, Zupeng

    Computers & Fluids, Vol. 210 (2020), Iss. P.104678

    https://doi.org/10.1016/j.compfluid.2020.104678 [Citations: 0]
  30. A high order cell centred dual grid Lagrangian Godunov scheme

    Barlow, A.J.

    Computers & Fluids, Vol. 83 (2013), Iss. P.15

    https://doi.org/10.1016/j.compfluid.2013.02.009 [Citations: 15]
  31. Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes

    Sambasivan, Shiv Kumar | Shashkov, Mikhail J. | Burton, Donald E.

    Computers & Fluids, Vol. 83 (2013), Iss. P.98

    https://doi.org/10.1016/j.compfluid.2012.04.010 [Citations: 27]
  32. A multislope MUSCL method for vectorial reconstructions

    Tételin, Arthur | Le Touze, Clément

    Journal of Computational Physics, Vol. 513 (2024), Iss. P.113185

    https://doi.org/10.1016/j.jcp.2024.113185 [Citations: 0]
  33. High-accurate and robust conservative remapping combining polynomial and hyperbolic tangent reconstructions

    Kucharik, Milan | Loubère, Raphaël

    Computers & Fluids, Vol. 208 (2020), Iss. P.104614

    https://doi.org/10.1016/j.compfluid.2020.104614 [Citations: 1]
  34. Investigation of a Rotated Riemann Solver in Cell-Centered Lagrangian Schemes

    Chunyuan, Xu | Zeng, Qinghong

    SSRN Electronic Journal , Vol. (2021), Iss.

    https://doi.org/10.2139/ssrn.3982973 [Citations: 0]
  35. A cylindrical discontinuous Galerkin method for compressible flows in axisymmetric geometry

    Cao, Yuan | Liu, Yun-Long | Zhang, A-Man | Wang, Shi-Ping | Wang, Hai-Jin

    Computers & Fluids, Vol. 269 (2024), Iss. P.106125

    https://doi.org/10.1016/j.compfluid.2023.106125 [Citations: 0]
  36. Direction-aware slope limiter for three-dimensional cubic grids with adaptive mesh refinement

    Velechovsky, Jan | Francois, Marianne | Masser, Thomas

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 2 P.670

    https://doi.org/10.1016/j.camwa.2018.05.026 [Citations: 2]
  37. A staggered Lagrangian magnetohydrodynamics method based on subcell Riemann solver

    Wang, Xun | Guo, Hongping | Shen, Zhijun

    Journal of Computational Physics, Vol. 520 (2025), Iss. P.113479

    https://doi.org/10.1016/j.jcp.2024.113479 [Citations: 0]
  38. A New Thermodynamically Compatible Finite Volume Scheme for Lagrangian Gas Dynamics

    Boscheri, Walter | Dumbser, Michael | Maire, Pierre-Henri

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2224

    https://doi.org/10.1137/23M1580863 [Citations: 0]
  39. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    Morgan, Nathaniel R. | Waltz, Jacob I. | Burton, Donald E. | Charest, Marc R. | Canfield, Thomas R. | Wohlbier, John G.

    Journal of Computational Physics, Vol. 290 (2015), Iss. P.239

    https://doi.org/10.1016/j.jcp.2015.02.024 [Citations: 19]
  40. Implicit Lagrangian-Eulerian Tvd Method For Solving Two-Dimensional Hydrodynamic Equations On Unstructured Meshes

    Vaziev, E. M. | Gadzhiev, A. D. | Kuzmin, S. Y. | Panyukov, Y. G.

    Mathematical Models and Computer Simulations, Vol. 10 (2018), Iss. 5 P.670

    https://doi.org/10.1134/S2070048218050137 [Citations: 0]
  41. Anisotropic slope limiting for discontinuous Galerkin methods

    Aizinger, Vadym | Kosík, Adam | Kuzmin, Dmitri | Reuter, Balthasar

    International Journal for Numerical Methods in Fluids, Vol. 84 (2017), Iss. 9 P.543

    https://doi.org/10.1002/fld.4360 [Citations: 13]
  42. The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems

    Diot, S. | Loubère, R. | Clain, S.

    International Journal for Numerical Methods in Fluids, Vol. 73 (2013), Iss. 4 P.362

    https://doi.org/10.1002/fld.3804 [Citations: 102]
  43. An ALE formulation for compressible flows based on multi-moment finite volume method

    Jin, Peng | Deng, Xi | Xiao, Feng

    Engineering Applications of Computational Fluid Mechanics, Vol. 12 (2018), Iss. 1 P.791

    https://doi.org/10.1080/19942060.2018.1527726 [Citations: 1]
  44. Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts

    Deng, Xi | Xie, Bin | Loubère, Raphaël | Shimizu, Yuya | Xiao, Feng

    Computers & Fluids, Vol. 171 (2018), Iss. P.1

    https://doi.org/10.1016/j.compfluid.2018.05.015 [Citations: 57]
  45. A parameter-free staggered-grid Lagrangian scheme for two-dimensional compressible flow problems

    Xu, Xihua

    Journal of Computational Physics, Vol. 499 (2024), Iss. P.112720

    https://doi.org/10.1016/j.jcp.2023.112720 [Citations: 1]
  46. A cell-centered discontinuous Galerkin multi-material arbitrary Lagrangian-Eulerian method in axisymmetric geometry

    Qing, Fang | Jia, Zupeng | Liu, Liqi

    Journal of Computational Physics, Vol. 473 (2023), Iss. P.111745

    https://doi.org/10.1016/j.jcp.2022.111745 [Citations: 5]
  47. Arbitrary Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows

    Barlow, Andrew J. | Maire, Pierre-Henri | Rider, William J. | Rieben, Robert N. | Shashkov, Mikhail J.

    Journal of Computational Physics, Vol. 322 (2016), Iss. P.603

    https://doi.org/10.1016/j.jcp.2016.07.001 [Citations: 136]
  48. Flux corrected remapping using piecewise parabolic reconstruction for 2D cell‐centered ALE methods

    Velechovsky, J. | Breil, J. | Liska, R.

    International Journal for Numerical Methods in Fluids, Vol. 76 (2014), Iss. 9 P.575

    https://doi.org/10.1002/fld.3951 [Citations: 3]
  49. A Lagrangian discontinuous Galerkin hydrodynamic method for 2D Cartesian and RZ axisymmetric coordinates

    Liu, Xiaodong | Morgan, Nathaniel R. | Burton, Donald E.

    2018 AIAA Aerospace Sciences Meeting, (2018),

    https://doi.org/10.2514/6.2018-1562 [Citations: 4]
  50. A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm

    Deng, Xi | Shimizu, Yuya | Xiao, Feng

    Journal of Computational Physics, Vol. 386 (2019), Iss. P.323

    https://doi.org/10.1016/j.jcp.2019.02.024 [Citations: 52]
  51. A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids

    Vilar, François | Maire, Pierre-Henri | Abgrall, Rémi

    Journal of Computational Physics, Vol. 276 (2014), Iss. P.188

    https://doi.org/10.1016/j.jcp.2014.07.030 [Citations: 81]
  52. A Godunov-type tensor artificial viscosity for staggered Lagrangian hydrodynamics

    Xu, Chunyuan | Zeng, Qinghong | Cheng, Juan

    Journal of Computational Physics, Vol. 426 (2021), Iss. P.109666

    https://doi.org/10.1016/j.jcp.2020.109666 [Citations: 2]
  53. Symmetry-preserving WENO-type reconstruction schemes in Lagrangian hydrodynamics

    Liu, Xiaodong | Morgan, Nathaniel R.

    Computers & Fluids, Vol. 205 (2020), Iss. P.104528

    https://doi.org/10.1016/j.compfluid.2020.104528 [Citations: 7]
  54. A 3D finite element ALE method using an approximate Riemann solution

    Chiravalle, V. P. | Morgan, N. R.

    International Journal for Numerical Methods in Fluids, Vol. 83 (2017), Iss. 8 P.642

    https://doi.org/10.1002/fld.4284 [Citations: 25]
  55. VIP (Vector Image Polygon) multi-dimensional slope limiters for scalar variables

    Luttwak, Gabi | Falcovitz, Joseph

    Computers & Fluids, Vol. 83 (2013), Iss. P.90

    https://doi.org/10.1016/j.compfluid.2012.08.022 [Citations: 11]
  56. Conservative and Spherical Symmetry Preserving Control Volume Staggered Lagrangian Scheme in Two-Dimensional Cylindrical Coordinates

    Li, Liu | Liu, Shengping | Cheng, Jun-Bo | Yong, Heng | Li, Zhongze

    SSRN Electronic Journal , Vol. (2021), Iss.

    https://doi.org/10.2139/ssrn.3995989 [Citations: 0]
  57. Improved detection criteria for the Multi-dimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials

    Diot, S. | Clain, S. | Loubère, R.

    Computers & Fluids, Vol. 64 (2012), Iss. P.43

    https://doi.org/10.1016/j.compfluid.2012.05.004 [Citations: 141]
  58. An HLLC-type approximate Riemann solver for two-dimensional elastic-perfectly plastic model

    Li, Xiao | Zhai, Jiayin | Shen, Zhijun

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110675

    https://doi.org/10.1016/j.jcp.2021.110675 [Citations: 3]
  59. A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme

    Liu, Xiaodong | Morgan, Nathaniel R. | Burton, Donald E.

    Journal of Computational Physics, Vol. 386 (2019), Iss. P.110

    https://doi.org/10.1016/j.jcp.2019.02.008 [Citations: 37]
  60. A cell-centered Lagrangian method based on local evolution Galerkin scheme for two-dimensional compressible flows

    Sun, Yutao | Yu, Ming | Jia, Zupeng | Ren, Yu-Xin

    Computers & Fluids, Vol. 128 (2016), Iss. P.65

    https://doi.org/10.1016/j.compfluid.2016.01.013 [Citations: 1]