Parallel Molecular Dynamics with Irregular Domain Decomposition

Parallel Molecular Dynamics with Irregular Domain Decomposition

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 1071–1088

Abstract

The spatial domain of Molecular Dynamics simulations is usually a regular box that can be easily divided in subdomains for parallel processing. Recent efforts aimed at simulating complex biological systems, like the blood flow inside arteries, require the execution of Parallel Molecular Dynamics (PMD) in vessels that have, by nature, an irregular shape. In those cases, the geometry of the domain becomes an additional input parameter that directly influences the outcome of the simulation. In this paper we discuss the problems due to the parallelization of MD in complex geometries and show an efficient and general method to perform MD in irregular domains.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.140810.021210a

Communications in Computational Physics, Vol. 10 (2011), Iss. 4 : pp. 1071–1088

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    18

Keywords:   

  1. Classical molecular dynamics on graphics processing unit architectures

    Jász, Ádám | Rák, Ádám | Ladjánszki, István | Cserey, György

    WIREs Computational Molecular Science, Vol. 10 (2020), Iss. 2

    https://doi.org/10.1002/wcms.1444 [Citations: 12]
  2. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows

    Ye, Ting | Phan-Thien, Nhan | Lim, Chwee Teck | Peng, Lina | Shi, Huixin

    Physical Review E, Vol. 95 (2017), Iss. 6

    https://doi.org/10.1103/PhysRevE.95.063314 [Citations: 51]
  3. Parallel node placement method by bubble simulation

    Nie, Yufeng | Zhang, Weiwei | Qi, Nan | Li, Yiqiang

    Computer Physics Communications, Vol. 185 (2014), Iss. 3 P.798

    https://doi.org/10.1016/j.cpc.2013.11.010 [Citations: 6]
  4. Multiscale Hemodynamics Using GPU Clusters

    Bisson, Mauro | Bernaschi, Massimo | Melchionna, Simone | Succi, Sauro | Kaxiras, Efthimios

    Communications in Computational Physics, Vol. 11 (2012), Iss. 1 P.48

    https://doi.org/10.4208/cicp.210910.250311a [Citations: 14]
  5. Petaflop biofluidics simulations on a two million-core system

    Bernaschi, Massimo | Bisson, Mauro | Endo, Toshio | Matsuoka, Satoshi | Fatica, Massimiliano | Melchionna, Simone

    Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, (2011), P.1

    https://doi.org/10.1145/2063384.2063389 [Citations: 28]
  6. Colloquium: Large scale simulations on GPU clusters

    Bernaschi, Massimo | Bisson, Mauro | Fatica, Massimiliano

    The European Physical Journal B, Vol. 88 (2015), Iss. 6

    https://doi.org/10.1140/epjb/e2015-60180-8 [Citations: 2]
  7. High Performance Computing in Multiscale Problems of Gas Dynamics

    Polyakov, S. V. | Podryga, V. O. | Puzyrkov, D. V.

    Lobachevskii Journal of Mathematics, Vol. 39 (2018), Iss. 9 P.1239

    https://doi.org/10.1134/S1995080218090160 [Citations: 8]
  8. Mesoscopic simulations at the physics-chemistry-biology interface

    Bernaschi, Massimo | Melchionna, Simone | Succi, Sauro

    Reviews of Modern Physics, Vol. 91 (2019), Iss. 2

    https://doi.org/10.1103/RevModPhys.91.025004 [Citations: 39]
  9. Petaflop hydrokinetic simulations of complex flows on massive GPU clusters

    Bernaschi, M. | Bisson, M. | Fatica, M. | Melchionna, S. | Succi, S.

    Computer Physics Communications, Vol. 184 (2013), Iss. 2 P.329

    https://doi.org/10.1016/j.cpc.2012.09.016 [Citations: 26]