Simulation of Three-Dimensional Strained Heteroepitaxial Growth Using Kinetic Monte Carlo

Simulation of Three-Dimensional Strained Heteroepitaxial Growth Using Kinetic Monte Carlo

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1089–1112

Abstract

Efficient algorithms for the simulation of strained heteroepitaxial growth with intermixing in 2+1 dimensions are presented. The first of these algorithms is an extension of the energy localization method [T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Sol., 3 (2009), 521–538] from 1+1 to 2+1 dimensions. Two approximations of this basic algorithm are then introduced, one of which treats adatoms in a more efficient manner, while the other makes use of an approximation of the change in elastic energy in terms of local elastic energy density. In both cases, it is demonstrated that a reasonable level of fidelity is achieved. Results are presented showing how the film morphology is affected by misfit and deposition rate. In addition, simulations of stacked quantum dots are also presented.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.101210.241210a

Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1089–1112

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:   

  1. Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling

    Lai, King C. | Han, Yong | Spurgeon, Peter | Huang, Wenyu | Thiel, Patricia A. | Liu, Da-Jiang | Evans, James W.

    Chemical Reviews, Vol. 119 (2019), Iss. 11 P.6670

    https://doi.org/10.1021/acs.chemrev.8b00582 [Citations: 61]
  2. Kinetic Monte Carlo simulations of heteroepitaxial growth with an atomistic model of elasticity

    Nath, Pinku | Ranganathan, Madhav

    Surface Science, Vol. 606 (2012), Iss. 17-18 P.1450

    https://doi.org/10.1016/j.susc.2012.05.015 [Citations: 10]
  3. Mechanisms of ring and island formation in lattice mismatched droplet epitaxy

    DeJarld, M. | Reyes, Kris | Smereka, P. | Millunchick, J. M.

    Applied Physics Letters, Vol. 102 (2013), Iss. 13

    https://doi.org/10.1063/1.4799965 [Citations: 22]
  4. Study of Stranski–Krastanov growth using kinetic Monte Carlo simulations with an atomistic model of elasticity

    Nath, Pinku | Ranganathan, Madhav

    Surface Science, Vol. 628 (2014), Iss. P.8

    https://doi.org/10.1016/j.susc.2014.05.003 [Citations: 5]
  5. Effects of confinements on morphology of InxGa1−xAs thin film grown on sub-micron patterned GaAs substrate: Elastoplastic phase field model

    Arjmand, M. | Deng, J. | Swaminathan, N. | Morgan, D. | Szlufarska, I.

    Journal of Applied Physics, Vol. 116 (2014), Iss. 11

    https://doi.org/10.1063/1.4896074 [Citations: 2]
  6. Kinetic Monte Carlo simulations and cross-sectional scanning tunneling microscopy as tools to investigate the heteroepitaxial capping of self-assembled quantum dots

    Keizer, J. G. | Koenraad, P. M. | Smereka, P. | Ulloa, J. M. | Guzman, A. | Hierro, A.

    Physical Review B, Vol. 85 (2012), Iss. 15

    https://doi.org/10.1103/PhysRevB.85.155326 [Citations: 12]
  7. Versatile stochastic model for predictive KMC simulation of fcc metal nanostructure evolution with realistic kinetics

    Han, Yong | Evans, James W.

    The Journal of Chemical Physics, Vol. 161 (2024), Iss. 7

    https://doi.org/10.1063/5.0221012 [Citations: 1]
  8. Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors

    van der Kaap, N.J. | Koster, L.J.A.

    Journal of Computational Physics, Vol. 307 (2016), Iss. P.321

    https://doi.org/10.1016/j.jcp.2015.12.001 [Citations: 35]
  9. Wetting of Elastic Solids on Nanopillars

    Ignacio, M. | Saito, Y. | Smereka, P. | Pierre-Louis, O.

    Physical Review Letters, Vol. 112 (2014), Iss. 14

    https://doi.org/10.1103/PhysRevLett.112.146102 [Citations: 6]
  10. Microscopic modeling of confined crystal growth and dissolution

    Høgberget, Jørgen | Røyne, Anja | Dysthe, Dag K. | Jettestuen, Espen

    Physical Review E, Vol. 94 (2016), Iss. 2

    https://doi.org/10.1103/PhysRevE.94.023005 [Citations: 7]
  11. Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition

    He, Li-Ping | He, Minxin

    Communications in Computational Physics, Vol. 11 (2012), Iss. 5 P.1697

    https://doi.org/10.4208/cicp.110310.090911a [Citations: 6]
  12. Kinetic Monte Carlo Simulations of Quantum Dot Self-Assembly

    Abramson, Matthew | Coleman, Hunter J. | Simmonds, Paul J. | Schulze, Tim P. | Ratsch, Christian

    SSRN Electronic Journal, Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4106703 [Citations: 0]
  13. Kinetic Monte Carlo modeling of heterogeneous catalysis on silica thermal protective materials based on reactive molecular dynamics simulation

    Li, Qin | Yang, Xiaofeng | Dong, Wei | Du, Yanxia

    International Journal of Heat and Mass Transfer, Vol. 236 (2025), Iss. P.126378

    https://doi.org/10.1016/j.ijheatmasstransfer.2024.126378 [Citations: 0]
  14. Kinetic Monte Carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings

    Schulze, T. P. | Smereka, P.

    Physical Review B, Vol. 86 (2012), Iss. 23

    https://doi.org/10.1103/PhysRevB.86.235313 [Citations: 42]
  15. Kinetic Monte Carlo simulations of quantum dot self-assembly

    Abramson, Matthew | Coleman, Hunter J. | Simmonds, Paul J. | Schulze, Tim P. | Ratsch, Christian

    Journal of Crystal Growth, Vol. 597 (2022), Iss. P.126846

    https://doi.org/10.1016/j.jcrysgro.2022.126846 [Citations: 2]
  16. Method to account for arbitrary strains in kinetic Monte Carlo simulations

    Subramanian, Gopinath | Perez, Danny | Uberuaga, Blas P. | Tomé, Carlos N. | Voter, Arthur F.

    Physical Review B, Vol. 87 (2013), Iss. 14

    https://doi.org/10.1103/PhysRevB.87.144107 [Citations: 29]
  17. Understanding the early stages of growth of Ge on Si(001) from lattice based simulations

    Ghosh, Paramita | Nath, Pinku | Ranganathan, Madhav

    Surface Science, Vol. 639 (2015), Iss. P.96

    https://doi.org/10.1016/j.susc.2015.04.026 [Citations: 2]
  18. Energetics Dictates Deposition at Metal/Solid Electrolyte Interfaces

    Tewari, Deepti | Mukherjee, Partha P.

    The Journal of Physical Chemistry C, Vol. 125 (2021), Iss. 4 P.2221

    https://doi.org/10.1021/acs.jpcc.0c05873 [Citations: 4]
  19. Approximating Off-Lattice Kinetic Monte Carlo

    Boateng, Henry A. | Schulze, Tim P. | Smereka, Peter

    Multiscale Modeling & Simulation, Vol. 12 (2014), Iss. 1 P.181

    https://doi.org/10.1137/130927528 [Citations: 9]
  20. Lattice gas study of thin-film growth scenarios and transitions between them: Role of substrate

    Empting, E. | Klopotek, M. | Hinderhofer, A. | Schreiber, F. | Oettel, M.

    Physical Review E, Vol. 103 (2021), Iss. 2

    https://doi.org/10.1103/PhysRevE.103.023302 [Citations: 14]
  21. Analysis of an Energy Localization Approximation applied to three-dimensional Kinetic Monte Carlo simulations of heteroepitaxial growth

    Golenbiewski, Kyle L. | Schulze, Tim P.

    Journal of the Mechanics and Physics of Solids, Vol. 95 (2016), Iss. P.708

    https://doi.org/10.1016/j.jmps.2016.04.030 [Citations: 0]
  22. A Rejection Scheme for Off-Lattice Kinetic Monte Carlo Simulation

    Ruzayqat, Hamza M. | Schulze, Tim P.

    Journal of Chemical Theory and Computation, Vol. 14 (2018), Iss. 1 P.48

    https://doi.org/10.1021/acs.jctc.7b00974 [Citations: 0]
  23. Kinetic Monte Carlo simulations of self-organization of Ge islands on Si(001)

    Ghosh, Paramita | Gupta, Nidhi | Dhankhar, Monika | Ranganathan, Madhav

    Physical Chemistry Chemical Physics, Vol. 23 (2021), Iss. 34 P.19022

    https://doi.org/10.1039/D1CP00069A [Citations: 2]
  24. Fast Kinetic Monte Carlo Simulations Using Hash Table Based Caching with Applications to Nanowire Growth and Sintering

    Reyes, Kristofer

    Multiscale Modeling & Simulation, Vol. 12 (2014), Iss. 1 P.200

    https://doi.org/10.1137/130926407 [Citations: 2]