Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access
Go to previous page

Absorbing Boundary Conditions for Solving <em>N</em>-Dimensional Stationary Schrödinger Equations with Unbounded Potentials and Nonlinearities

Absorbing Boundary Conditions for Solving <em>N</em>-Dimensional Stationary Schrödinger Equations with Unbounded Potentials and Nonlinearities

Year:    2011

Author:    Pauline Klein, Xavier Antoine, Christophe Besse, Matthias Ehrhardt

Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1280–1304

Abstract

We propose a hierarchy of novel absorbing boundary conditions for the one-dimensional stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger equations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.251010.160211a

Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1280–1304

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:   

Author Details

Pauline Klein Email

Xavier Antoine Email

Christophe Besse Email

Matthias Ehrhardt Email

  1. Nonlinear Schrödinger Equation and the Hyperbolization Method

    Yunakovsky, A. D.

    Computational Mathematics and Mathematical Physics, Vol. 62 (2022), Iss. 7 P.1112

    https://doi.org/10.1134/S0965542522070119 [Citations: 0]
  2. Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations

    Antoine, Xavier | Bao, Weizhu | Besse, Christophe

    Computer Physics Communications, Vol. 184 (2013), Iss. 12 P.2621

    https://doi.org/10.1016/j.cpc.2013.07.012 [Citations: 283]
  3. Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures

    Yusupov, J. R. | Sabirov, K. K. | Asadov, Q. U. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 101 (2020), Iss. 6

    https://doi.org/10.1103/PhysRevE.101.062208 [Citations: 11]
  4. Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions

    Sabirov, K. K. | Yusupov, J. R. | Aripov, M. M. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 103 (2021), Iss. 4

    https://doi.org/10.1103/PhysRevE.103.043305 [Citations: 11]
  5. Transparent nonlinear networks

    Yusupov, J. R. | Sabirov, K. K. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 100 (2019), Iss. 3

    https://doi.org/10.1103/PhysRevE.100.032204 [Citations: 17]
  6. Transparent quantum graphs

    Yusupov, J.R. | Sabirov, K.K. | Ehrhardt, M. | Matrasulov, D.U.

    Physics Letters A, Vol. 383 (2019), Iss. 20 P.2382

    https://doi.org/10.1016/j.physleta.2019.04.059 [Citations: 21]
  7. Transparent boundary conditions for the sine-Gordon equation: Modeling the reflectionless propagation of kink solitons on a line

    Sabirov, K.K. | Yusupov, J.R. | Ehrhardt, M. | Matrasulov, D.U.

    Physics Letters A, Vol. 423 (2022), Iss. P.127822

    https://doi.org/10.1016/j.physleta.2021.127822 [Citations: 7]
  8. On transparent vertex boundary conditions for quantum graphs

    Lavrukhine, A. A. | Popov, A. I. | Popov, I. Y.

    Indian Journal of Physics, Vol. 97 (2023), Iss. 7 P.2095

    https://doi.org/10.1007/s12648-022-02558-y [Citations: 0]
  9. Multi-Band Effective Mass Approximations

    Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations

    Klindworth, Dirk | Ehrhardt, Matthias | Koprucki, Thomas

    2014

    https://doi.org/10.1007/978-3-319-01427-2_8 [Citations: 1]
  10. Complex absorbing potentials for stark resonances

    Ben‐Asher, Anael | Moiseyev, Nimrod

    International Journal of Quantum Chemistry, Vol. 120 (2020), Iss. 2

    https://doi.org/10.1002/qua.26067 [Citations: 2]
  11. Perfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations

    Mennemann, Jan-Frederik | Jüngel, Ansgar

    Journal of Computational Physics, Vol. 275 (2014), Iss. P.1

    https://doi.org/10.1016/j.jcp.2014.06.049 [Citations: 16]
  12. Progress in Industrial Mathematics at ECMI 2010

    Absorbing Boundary Conditions for Solving Stationary Schrödinger Equations

    Klein, Pauline | Antoine, Xavier | Besse, Christophe | Ehrhardt, Matthias

    2012

    https://doi.org/10.1007/978-3-642-25100-9_74 [Citations: 0]
  13. Manakov system on metric graphs: Modeling the reflectionless propagation of vector solitons in networks

    Yusupov, J.R. | Matyokubov, Kh.Sh. | Ehrhardt, M. | Matrasulov, D.U.

    Physics Letters A, Vol. 479 (2023), Iss. P.128928

    https://doi.org/10.1016/j.physleta.2023.128928 [Citations: 1]
  14. Time Dependent Phase Space Filters

    Introduction

    Soffer, Avy | Stucchio, Chris | Tran, Minh-Binh

    2023

    https://doi.org/10.1007/978-981-19-6818-1_1 [Citations: 0]
  15. Numerical Solutions of Coupled Nonlinear Schrödinger Equations by Orthogonal Spline Collocation Method

    Meng, Qing-Jiang | Yin, Li-Ping | Jin, Xiao-Qing | Qiao, Fang-Li

    Communications in Computational Physics, Vol. 12 (2012), Iss. 5 P.1392

    https://doi.org/10.4208/cicp.180411.090112a [Citations: 9]
  16. Efficient semi-implicit compact finite difference scheme for nonlinear Schrödinger equations on unbounded domain

    Hu, Yunxia | Li, Hongwei | Jiang, Ziwen

    Applied Numerical Mathematics, Vol. 153 (2020), Iss. P.319

    https://doi.org/10.1016/j.apnum.2020.02.014 [Citations: 5]