Absorbing Boundary Conditions for Solving <em>N</em>-Dimensional Stationary Schrödinger Equations with Unbounded Potentials and Nonlinearities
Year: 2011
Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1280–1304
Abstract
We propose a hierarchy of novel absorbing boundary conditions for the one-dimensional stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger equations.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.251010.160211a
Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1280–1304
Published online: 2011-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
-
Nonlinear Schrödinger Equation and the Hyperbolization Method
Yunakovsky, A. D.
Computational Mathematics and Mathematical Physics, Vol. 62 (2022), Iss. 7 P.1112
https://doi.org/10.1134/S0965542522070119 [Citations: 0] -
Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations
Antoine, Xavier | Bao, Weizhu | Besse, ChristopheComputer Physics Communications, Vol. 184 (2013), Iss. 12 P.2621
https://doi.org/10.1016/j.cpc.2013.07.012 [Citations: 273] -
Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures
Yusupov, J. R. | Sabirov, K. K. | Asadov, Q. U. | Ehrhardt, M. | Matrasulov, D. U.Physical Review E, Vol. 101 (2020), Iss. 6
https://doi.org/10.1103/PhysRevE.101.062208 [Citations: 11] -
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Sabirov, K. K. | Yusupov, J. R. | Aripov, M. M. | Ehrhardt, M. | Matrasulov, D. U.Physical Review E, Vol. 103 (2021), Iss. 4
https://doi.org/10.1103/PhysRevE.103.043305 [Citations: 10] -
Transparent nonlinear networks
Yusupov, J. R. | Sabirov, K. K. | Ehrhardt, M. | Matrasulov, D. U.Physical Review E, Vol. 100 (2019), Iss. 3
https://doi.org/10.1103/PhysRevE.100.032204 [Citations: 16] -
Transparent quantum graphs
Yusupov, J.R. | Sabirov, K.K. | Ehrhardt, M. | Matrasulov, D.U.Physics Letters A, Vol. 383 (2019), Iss. 20 P.2382
https://doi.org/10.1016/j.physleta.2019.04.059 [Citations: 21] -
Transparent boundary conditions for the sine-Gordon equation: Modeling the reflectionless propagation of kink solitons on a line
Sabirov, K.K. | Yusupov, J.R. | Ehrhardt, M. | Matrasulov, D.U.Physics Letters A, Vol. 423 (2022), Iss. P.127822
https://doi.org/10.1016/j.physleta.2021.127822 [Citations: 6] -
On transparent vertex boundary conditions for quantum graphs
Lavrukhine, A. A. | Popov, A. I. | Popov, I. Y.Indian Journal of Physics, Vol. 97 (2023), Iss. 7 P.2095
https://doi.org/10.1007/s12648-022-02558-y [Citations: 0] -
Multi-Band Effective Mass Approximations
Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations
Klindworth, Dirk | Ehrhardt, Matthias | Koprucki, Thomas2014
https://doi.org/10.1007/978-3-319-01427-2_8 [Citations: 1] -
Complex absorbing potentials for stark resonances
Ben‐Asher, Anael | Moiseyev, NimrodInternational Journal of Quantum Chemistry, Vol. 120 (2020), Iss. 2
https://doi.org/10.1002/qua.26067 [Citations: 2] -
Perfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations
Mennemann, Jan-Frederik | Jüngel, AnsgarJournal of Computational Physics, Vol. 275 (2014), Iss. P.1
https://doi.org/10.1016/j.jcp.2014.06.049 [Citations: 16] -
Progress in Industrial Mathematics at ECMI 2010
Absorbing Boundary Conditions for Solving Stationary Schrödinger Equations
Klein, Pauline | Antoine, Xavier | Besse, Christophe | Ehrhardt, Matthias2012
https://doi.org/10.1007/978-3-642-25100-9_74 [Citations: 0] -
Manakov system on metric graphs: Modeling the reflectionless propagation of vector solitons in networks
Yusupov, J.R. | Matyokubov, Kh.Sh. | Ehrhardt, M. | Matrasulov, D.U.Physics Letters A, Vol. 479 (2023), Iss. P.128928
https://doi.org/10.1016/j.physleta.2023.128928 [Citations: 1] -
Time Dependent Phase Space Filters
Introduction
Soffer, Avy | Stucchio, Chris | Tran, Minh-Binh2023
https://doi.org/10.1007/978-981-19-6818-1_1 [Citations: 0] -
Numerical Solutions of Coupled Nonlinear Schrödinger Equations by Orthogonal Spline Collocation Method
Meng, Qing-Jiang | Yin, Li-Ping | Jin, Xiao-Qing | Qiao, Fang-LiCommunications in Computational Physics, Vol. 12 (2012), Iss. 5 P.1392
https://doi.org/10.4208/cicp.180411.090112a [Citations: 9] -
Efficient semi-implicit compact finite difference scheme for nonlinear Schrödinger equations on unbounded domain
Hu, Yunxia | Li, Hongwei | Jiang, ZiwenApplied Numerical Mathematics, Vol. 153 (2020), Iss. P.319
https://doi.org/10.1016/j.apnum.2020.02.014 [Citations: 5]