Absorbing Boundary Conditions for Solving <em>N</em>-Dimensional Stationary Schrödinger Equations with Unbounded Potentials and Nonlinearities

Absorbing Boundary Conditions for Solving <em>N</em>-Dimensional Stationary Schrödinger Equations with Unbounded Potentials and Nonlinearities

Year:    2011

Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1280–1304

Abstract

We propose a hierarchy of novel absorbing boundary conditions for the one-dimensional stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger equations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.251010.160211a

Communications in Computational Physics, Vol. 10 (2011), Iss. 5 : pp. 1280–1304

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:   

  1. Nonlinear Schrödinger Equation and the Hyperbolization Method

    Yunakovsky, A. D.

    Computational Mathematics and Mathematical Physics, Vol. 62 (2022), Iss. 7 P.1112

    https://doi.org/10.1134/S0965542522070119 [Citations: 0]
  2. Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations

    Antoine, Xavier | Bao, Weizhu | Besse, Christophe

    Computer Physics Communications, Vol. 184 (2013), Iss. 12 P.2621

    https://doi.org/10.1016/j.cpc.2013.07.012 [Citations: 273]
  3. Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures

    Yusupov, J. R. | Sabirov, K. K. | Asadov, Q. U. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 101 (2020), Iss. 6

    https://doi.org/10.1103/PhysRevE.101.062208 [Citations: 11]
  4. Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions

    Sabirov, K. K. | Yusupov, J. R. | Aripov, M. M. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 103 (2021), Iss. 4

    https://doi.org/10.1103/PhysRevE.103.043305 [Citations: 10]
  5. Transparent nonlinear networks

    Yusupov, J. R. | Sabirov, K. K. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 100 (2019), Iss. 3

    https://doi.org/10.1103/PhysRevE.100.032204 [Citations: 16]
  6. Transparent quantum graphs

    Yusupov, J.R. | Sabirov, K.K. | Ehrhardt, M. | Matrasulov, D.U.

    Physics Letters A, Vol. 383 (2019), Iss. 20 P.2382

    https://doi.org/10.1016/j.physleta.2019.04.059 [Citations: 21]
  7. Transparent boundary conditions for the sine-Gordon equation: Modeling the reflectionless propagation of kink solitons on a line

    Sabirov, K.K. | Yusupov, J.R. | Ehrhardt, M. | Matrasulov, D.U.

    Physics Letters A, Vol. 423 (2022), Iss. P.127822

    https://doi.org/10.1016/j.physleta.2021.127822 [Citations: 6]
  8. On transparent vertex boundary conditions for quantum graphs

    Lavrukhine, A. A. | Popov, A. I. | Popov, I. Y.

    Indian Journal of Physics, Vol. 97 (2023), Iss. 7 P.2095

    https://doi.org/10.1007/s12648-022-02558-y [Citations: 0]
  9. Multi-Band Effective Mass Approximations

    Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations

    Klindworth, Dirk | Ehrhardt, Matthias | Koprucki, Thomas

    2014

    https://doi.org/10.1007/978-3-319-01427-2_8 [Citations: 1]
  10. Complex absorbing potentials for stark resonances

    Ben‐Asher, Anael | Moiseyev, Nimrod

    International Journal of Quantum Chemistry, Vol. 120 (2020), Iss. 2

    https://doi.org/10.1002/qua.26067 [Citations: 2]
  11. Perfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations

    Mennemann, Jan-Frederik | Jüngel, Ansgar

    Journal of Computational Physics, Vol. 275 (2014), Iss. P.1

    https://doi.org/10.1016/j.jcp.2014.06.049 [Citations: 16]
  12. Progress in Industrial Mathematics at ECMI 2010

    Absorbing Boundary Conditions for Solving Stationary Schrödinger Equations

    Klein, Pauline | Antoine, Xavier | Besse, Christophe | Ehrhardt, Matthias

    2012

    https://doi.org/10.1007/978-3-642-25100-9_74 [Citations: 0]
  13. Manakov system on metric graphs: Modeling the reflectionless propagation of vector solitons in networks

    Yusupov, J.R. | Matyokubov, Kh.Sh. | Ehrhardt, M. | Matrasulov, D.U.

    Physics Letters A, Vol. 479 (2023), Iss. P.128928

    https://doi.org/10.1016/j.physleta.2023.128928 [Citations: 1]
  14. Time Dependent Phase Space Filters

    Introduction

    Soffer, Avy | Stucchio, Chris | Tran, Minh-Binh

    2023

    https://doi.org/10.1007/978-981-19-6818-1_1 [Citations: 0]
  15. Numerical Solutions of Coupled Nonlinear Schrödinger Equations by Orthogonal Spline Collocation Method

    Meng, Qing-Jiang | Yin, Li-Ping | Jin, Xiao-Qing | Qiao, Fang-Li

    Communications in Computational Physics, Vol. 12 (2012), Iss. 5 P.1392

    https://doi.org/10.4208/cicp.180411.090112a [Citations: 9]
  16. Efficient semi-implicit compact finite difference scheme for nonlinear Schrödinger equations on unbounded domain

    Hu, Yunxia | Li, Hongwei | Jiang, Ziwen

    Applied Numerical Mathematics, Vol. 153 (2020), Iss. P.319

    https://doi.org/10.1016/j.apnum.2020.02.014 [Citations: 5]