Analytical Solution for Waves Propagation in Heterogeneous Acoustic/Porous Media Part I: The 2D Case

Analytical Solution for Waves Propagation in Heterogeneous Acoustic/Porous Media Part I: The 2D Case

Year:    2010

Communications in Computational Physics, Vol. 7 (2010), Iss. 1 : pp. 171–194

Abstract

Thanks to the Cagniard-de Hoop's method we derive the solution to the problem of wave propagation in an infinite bilayered acoustic/poroelastic media, where the poroelastic layer is modelled by the biphasic Biot's model. This first part is dedicated to solution to the two-dimensional problem. We illustrate the properties of the solution, which will be used to validate a numerical code.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2009.08.148

Communications in Computational Physics, Vol. 7 (2010), Iss. 1 : pp. 171–194

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:   

  1. Simulation of Poro-Elastic Seismic Wave Propagation in Complex Borehole Environments Using a Pseudo-Spectral Approach

    Sidler, Rolf | Carcione, José M. | Holliger, Klaus

    Poromechanics V, (2013), P.154

    https://doi.org/10.1061/9780784412992.018 [Citations: 0]
  2. Distributional finite-difference modelling of seismic waves

    Masson, Yder

    Geophysical Journal International, Vol. 233 (2022), Iss. 1 P.264

    https://doi.org/10.1093/gji/ggac306 [Citations: 4]
  3. Perfectly matched absorbing layer for modelling transient wave propagation in heterogeneous poroelastic media

    He, Yanbin | Chen, Tianning | Gao, Jinghuai

    Journal of Geophysics and Engineering, Vol. (2019), Iss.

    https://doi.org/10.1093/jge/gxz080 [Citations: 1]
  4. Semi-analytical solution of transient plane waves transmitted through a transversely isotropic poroelastic plate immersed in fluid

    Nguyen, Vu-Hieu | Naili, Salah

    Journal of Engineering Mathematics, Vol. 86 (2014), Iss. 1 P.125

    https://doi.org/10.1007/s10665-013-9654-5 [Citations: 8]
  5. Analytic and numerical solutions to the seismic wave equation in continuous media

    Walters, S. J. | Forbes, L. K. | Reading, A. M.

    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 476 (2020), Iss. 2243

    https://doi.org/10.1098/rspa.2020.0636 [Citations: 1]
  6. Geophysics Today

    18. Seismic Modeling and Wave Propagation

    Carcione, José M. | Morency, Christina | Santos, Juan E.

    2010

    https://doi.org/10.1190/1.9781560802273.ch18 [Citations: 0]
  7. Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media

    Lefeuve-Mesgouez, G. | Mesgouez, A. | Chiavassa, G. | Lombard, B.

    Wave Motion, Vol. 49 (2012), Iss. 7 P.667

    https://doi.org/10.1016/j.wavemoti.2012.04.006 [Citations: 19]
  8. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    Rahimi Dalkhani, Amin | Javaherian, Abdolrahim | Mahdavi Basir, Hadi

    Waves in Random and Complex Media, Vol. 28 (2018), Iss. 2 P.367

    https://doi.org/10.1080/17455030.2017.1355079 [Citations: 4]
  9. Large-Amplitude Elastic Free-Surface Waves: Geometric Nonlinearity and Peakons

    Forbes, Lawrence K. | Walters, Stephen J. | Reading, Anya M.

    Journal of Elasticity, Vol. 146 (2021), Iss. 1 P.1

    https://doi.org/10.1007/s10659-021-09852-6 [Citations: 0]
  10. On the accuracy and spatial sampling of finite-difference modelling in discontinuous models

    Tschache, Saskia | Vinje, Vetle | Iversen, Einar

    Journal of Applied Geophysics, Vol. 206 (2022), Iss. P.104789

    https://doi.org/10.1016/j.jappgeo.2022.104789 [Citations: 2]
  11. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    Sidler, Rolf | Carcione, José M. | Holliger, Klaus

    Journal of Computational Physics, Vol. 235 (2013), Iss. P.846

    https://doi.org/10.1016/j.jcp.2012.09.044 [Citations: 24]
  12. Modelling of 2-D seismic wave propagation in heterogeneous porous media: a frequency-domain finite-element method formulated by variational principles

    Wang, Dongdong | Gao, Yongxin | Zhou, Guanqun | Jiang, Yaochang

    Geophysical Journal International, Vol. 239 (2024), Iss. 3 P.1729

    https://doi.org/10.1093/gji/ggae331 [Citations: 0]
  13. Study on transmission and reflection characteristics of plane S1 wave at the interface between saturated frozen soil and elastic solid bedrock

    Jiang, Huipeng | Ma, Qiang | Zhang, Wuyu

    GEOPHYSICS, Vol. 88 (2023), Iss. 6 P.T305

    https://doi.org/10.1190/geo2022-0707.1 [Citations: 0]
  14. P-SV-wave propagation in heterogeneous media: Velocity-stress distributional finite-difference method

    Masson, Yder | Virieux, Jean

    GEOPHYSICS, Vol. 88 (2023), Iss. 3 P.T165

    https://doi.org/10.1190/geo2022-0118.1 [Citations: 3]
  15. On Mathematical and Numerical Modelling of Multiphysics Wave Propagation with Polytopal Discontinuous Galerkin Methods: a Review

    Antonietti, Paola F. | Botti, Michele | Mazzieri, Ilario

    Vietnam Journal of Mathematics, Vol. 50 (2022), Iss. 4 P.997

    https://doi.org/10.1007/s10013-022-00566-3 [Citations: 3]
  16. Computational poroelasticity — A review

    Carcione, José M. | Morency, Christina | Santos, Juan E.

    GEOPHYSICS, Vol. 75 (2010), Iss. 5 P.75A229

    https://doi.org/10.1190/1.3474602 [Citations: 152]
  17. Seismic waves in medium with poroelastic/elastic interfaces: a two-dimensionalP-SVfinite-difference modelling

    Gregor, David | Moczo, Peter | Kristek, Jozef | Mesgouez, Arnaud | Lefeuve-Mesgouez, Gaëlle | Morency, Christina | Diaz, Julien | Kristekova, Miriam

    Geophysical Journal International, Vol. 228 (2021), Iss. 1 P.551

    https://doi.org/10.1093/gji/ggab357 [Citations: 1]
  18. A pseudo-spectral method for simulating poro-elastic seismic wave propagation in complex borehole environments

    Sidler, Rolf | Carcione, José M. | Holliger, Klaus

    SEG Technical Program Expanded Abstracts 2012, (2012), P.1

    https://doi.org/10.1190/segam2012-1247.1 [Citations: 1]
  19. Simulation of surface waves in porous media

    Sidler, Rolf | Carcione, José M. | Holliger, Klaus

    Geophysical Journal International, Vol. 183 (2010), Iss. 2 P.820

    https://doi.org/10.1111/j.1365-246X.2010.04725.x [Citations: 32]
  20. High-order numerical simulation of axisymmetric wave phase conjugation

    Modarreszadeh, Amir | Timofeev, Evgeny

    Computers & Fluids, Vol. 197 (2020), Iss. P.104353

    https://doi.org/10.1016/j.compfluid.2019.104353 [Citations: 1]
  21. Wave Propagation Across Acoustic/Biot’s Media: A Finite-Difference Method

    Chiavassa, Guillaume | Lombard, Bruno

    Communications in Computational Physics, Vol. 13 (2013), Iss. 4 P.985

    https://doi.org/10.4208/cicp.140911.050412a [Citations: 20]
  22. Modelling of two-dimensional seismic waves in double-porosity media using the frequency-domain finite-element method

    Jiang, Yaochang | Gao, Yongxin | Wang, Dongdong | Song, Yongjia | Zhou, Guanqun | Yao, Cheng

    Geophysical Journal International, Vol. 240 (2024), Iss. 1 P.400

    https://doi.org/10.1093/gji/ggae356 [Citations: 0]
  23. Modular and flexible spectral-element waveform modelling in two and three dimensions

    Afanasiev, Michael | Boehm, Christian | van Driel, Martin | Krischer, Lion | Rietmann, Max | May, Dave A | Knepley, Matthew G | Fichtner, Andreas

    Geophysical Journal International, Vol. 216 (2019), Iss. 3 P.1675

    https://doi.org/10.1093/gji/ggy469 [Citations: 127]
  24. A temporal fourth-order scheme for the first-order acoustic wave equations

    Long, Guihua | Zhao, Yubo | Zou, Jun

    Geophysical Journal International, Vol. 194 (2013), Iss. 3 P.1473

    https://doi.org/10.1093/gji/ggt168 [Citations: 27]