Journals
Resources
About Us
Open Access

A Lattice Boltzmann Study of Phase Separation in Liquid-Vapor Systems with Gravity

A Lattice Boltzmann Study of Phase Separation in Liquid-Vapor Systems with Gravity

Year:    2010

Communications in Computational Physics, Vol. 7 (2010), Iss. 2 : pp. 350–361

Abstract

Phase separation of a two-dimensional van der Waals fluid subject to a gravitational force is studied by numerical simulations based on lattice Boltzmann methods implemented with a finite difference scheme. A growth exponent α=1 is measured in the direction of the external force.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2009.08.205

Communications in Computational Physics, Vol. 7 (2010), Iss. 2 : pp. 350–361

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:   

  1. Lattice Boltzmann modeling and simulation of compressible flows

    Xu, Ai-Guo | Zhang, Guang-Cai | Gan, Yan-Biao | Chen, Feng | Yu, Xi-Jun

    Frontiers of Physics, Vol. 7 (2012), Iss. 5 P.582

    https://doi.org/10.1007/s11467-012-0269-5 [Citations: 108]
  2. Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization

    Gan, Yanbiao | Xu, Aiguo | Zhang, Guangcai | Li, Yingjun | Li, Hua

    Physical Review E, Vol. 84 (2011), Iss. 4

    https://doi.org/10.1103/PhysRevE.84.046715 [Citations: 48]
  3. Lattice Boltzmann methods and active fluids

    Carenza, Livio Nicola | Gonnella, Giuseppe | Lamura, Antonio | Negro, Giuseppe | Tiribocchi, Adriano

    The European Physical Journal E, Vol. 42 (2019), Iss. 6

    https://doi.org/10.1140/epje/i2019-11843-6 [Citations: 60]
  4. High-order thermal lattice Boltzmann models derived by means of Gauss quadrature in the spherical coordinate system

    Ambruş, Victor Eugen | Sofonea, Victor

    Physical Review E, Vol. 86 (2012), Iss. 1

    https://doi.org/10.1103/PhysRevE.86.016708 [Citations: 34]
  5. Phase separation of a binary mixture with an external force field

    Bertei, Antonio | Mauri, Roberto

    Chemical Engineering Science, Vol. 263 (2022), Iss. P.118128

    https://doi.org/10.1016/j.ces.2022.118128 [Citations: 1]
  6. Comparison between isothermal collision-streaming and finite-difference lattice Boltzmann models

    Negro, G. | Busuioc, S. | Ambruş, V. E. | Gonnella, G. | Lamura, A. | Sofonea, V.

    International Journal of Modern Physics C, Vol. 30 (2019), Iss. 10 P.1941005

    https://doi.org/10.1142/S0129183119410055 [Citations: 6]
  7. Pattern formation in liquid-vapor systems under periodic potential and shear

    Coclite, A. | Gonnella, G. | Lamura, A.

    Physical Review E, Vol. 89 (2014), Iss. 6

    https://doi.org/10.1103/PhysRevE.89.063303 [Citations: 15]
  8. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method

    Hejranfar, Kazem | Ezzatneshan, Eslam

    Physical Review E, Vol. 92 (2015), Iss. 5

    https://doi.org/10.1103/PhysRevE.92.053305 [Citations: 20]
  9. Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets

    Biciuşcă, Tonino | Horga, Adrian | Sofonea, Victor

    Comptes Rendus. Mécanique, Vol. 343 (2015), Iss. 10-11 P.580

    https://doi.org/10.1016/j.crme.2015.07.011 [Citations: 9]
  10. Anisotropic domain growth and complex coacervation in nanoclay-polyelectrolyte solutions

    Pawar, Nisha | Bohidar, H.B.

    Advances in Colloid and Interface Science, Vol. 167 (2011), Iss. 1-2 P.12

    https://doi.org/10.1016/j.cis.2011.06.007 [Citations: 20]
  11. Lattice Boltzmann model for combustion and detonation

    Yan, Bo | Xu, Ai-Guo | Zhang, Guang-Cai | Ying, Yang-Jun | Li, Hua

    Frontiers of Physics, Vol. 8 (2013), Iss. 1 P.94

    https://doi.org/10.1007/s11467-013-0286-z [Citations: 58]
  12. Lattice Boltzmann study on Kelvin-Helmholtz instability: Roles of velocity and density gradients

    Gan, Yanbiao | Xu, Aiguo | Zhang, Guangcai | Li, Yingjun

    Physical Review E, Vol. 83 (2011), Iss. 5

    https://doi.org/10.1103/PhysRevE.83.056704 [Citations: 65]
  13. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Sofonea, V. | Biciuşcă, T. | Busuioc, S. | Ambruş, Victor E. | Gonnella, G. | Lamura, A.

    Physical Review E, Vol. 97 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.97.023309 [Citations: 20]
  14. Kinetics of vapor–liquid and vapor–solid phase separation under gravity

    Davis, Daniya | Sen Gupta, Bhaskar

    Soft Matter, Vol. (2025), Iss.

    https://doi.org/10.1039/D4SM01055H [Citations: 0]
  15. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions

    Gan, Yan-Biao | Xu, Ai-Guo | Zhang, Guang-Cai | Li, Ying-Jun

    Frontiers of Physics, Vol. 7 (2012), Iss. 4 P.481

    https://doi.org/10.1007/s11467-012-0245-0 [Citations: 18]
  16. Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method

    Fogliatto, Ezequiel Oscar | Clausse, Alejandro | Teruel, Federico Eduardo

    International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29 (2019), Iss. 9 P.3095

    https://doi.org/10.1108/HFF-11-2018-0682 [Citations: 3]
  17. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    Gan, Yan-Biao | Xu, Ai-Guo | Zhang, Guang-Cai | Li, Ying-Jun

    Communications in Theoretical Physics, Vol. 56 (2011), Iss. 3 P.490

    https://doi.org/10.1088/0253-6102/56/3/18 [Citations: 22]
  18. Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances

    Xu, Bin | Shen, Xi | Zhang, Desheng | Zhang, Weibin

    Processes, Vol. 7 (2019), Iss. 12 P.935

    https://doi.org/10.3390/pr7120935 [Citations: 20]
  19. Three-Dimensional Cavitation Bubble Simulations based on Lattice Boltzmann Model Coupled with Carnahan-Starling Equation of State

    Su, Yanwen | Tang, Xuelin | Wang, Fujun | Li, Xiaoqin | Shi, Xiaoyan

    Communications in Computational Physics, Vol. 22 (2017), Iss. 2 P.473

    https://doi.org/10.4208/cicp.OA-2016-0112 [Citations: 9]
  20. Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    Kähler, G. | Bonelli, F. | Gonnella, G. | Lamura, A.

    Physics of Fluids, Vol. 27 (2015), Iss. 12

    https://doi.org/10.1063/1.4937595 [Citations: 28]
  21. FFT-LB Modeling of Thermal Liquid-Vapor System

    Gan, Yan-Biao | Xu, Ai-Guo | Zhang, Guang-Cai | Li, Ying-Jun

    Communications in Theoretical Physics, Vol. 57 (2012), Iss. 4 P.681

    https://doi.org/10.1088/0253-6102/57/4/24 [Citations: 16]