Hyperbolic Moment Equations in Kinetic Gas Theory Based on Multi-Variate Pearson-IV-Distributions

Hyperbolic Moment Equations in Kinetic Gas Theory Based on Multi-Variate Pearson-IV-Distributions

Year:    2010

Communications in Computational Physics, Vol. 7 (2010), Iss. 4 : pp. 639–673

Abstract

In this paper we develop a new closure theory for moment approximations in kinetic gas theory and derive hyperbolic moment equations for 13 fluid variables including stress and heat flux. Classical equations have either restricted hyperbolicity regions like Grad's moment equations or fail to include higher moments in a practical way like the entropy maximization approach. The new closure is based on Pearson-Type-IV distributions which reduce to Maxwellians in equilibrium, but allow anisotropies and skewness in non-equilibrium. The closure relations are essentially explicit and easy to evaluate. Hyperbolicity is shown numerically for a large range of values. Numerical solutions of Riemann problems demonstrate the capability of the new equations to handle strong non-equilibrium.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2009.09.049

Communications in Computational Physics, Vol. 7 (2010), Iss. 4 : pp. 639–673

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    35

Keywords:   

  1. Conditional quadrature method of moments for kinetic equations

    Yuan, C. | Fox, R.O.

    Journal of Computational Physics, Vol. 230 (2011), Iss. 22 P.8216

    https://doi.org/10.1016/j.jcp.2011.07.020 [Citations: 182]
  2. Data-driven constitutive relation reveals scaling law for hydrodynamic transport coefficients

    Zheng, Candi | Wang, Yang | Chen, Shiyi

    Physical Review E, Vol. 107 (2023), Iss. 1

    https://doi.org/10.1103/PhysRevE.107.015104 [Citations: 1]
  3. Moment method as a numerical solver: Challenge from shock structure problems

    Cai, Zhenning

    Journal of Computational Physics, Vol. 444 (2021), Iss. P.110593

    https://doi.org/10.1016/j.jcp.2021.110593 [Citations: 4]
  4. Numerical Stability with Help from Entropy: Solving a Set of 13 Moment Equations for Shock Tube Problem

    Zinner, Carl Philipp | Öttinger, Hans Christian

    Journal of Non-Equilibrium Thermodynamics, Vol. 44 (2019), Iss. 1 P.43

    https://doi.org/10.1515/jnet-2018-0038 [Citations: 7]
  5. Moment Closure Approximations of the Boltzmann Equation Based on $$\varphi $$ φ -Divergences

    Abdelmalik, M. R. A. | van Brummelen, E. H.

    Journal of Statistical Physics, Vol. 164 (2016), Iss. 1 P.77

    https://doi.org/10.1007/s10955-016-1529-5 [Citations: 26]
  6. Multivariate Gaussian Extended Quadrature Method of Moments for Turbulent Disperse Multiphase Flow

    Chalons, C. | Fox, R. O. | Laurent, F. | Massot, M. | Vié, A.

    Multiscale Modeling & Simulation, Vol. 15 (2017), Iss. 4 P.1553

    https://doi.org/10.1137/16M109209X [Citations: 23]
  7. Modeling Nonequilibrium Gas Flow Based on Moment Equations

    Torrilhon, Manuel

    Annual Review of Fluid Mechanics, Vol. 48 (2016), Iss. 1 P.429

    https://doi.org/10.1146/annurev-fluid-122414-034259 [Citations: 160]
  8. Formulation of 8-moment plasma transport with application to the Nernst effect

    Hamilton, Jason | Seyler, Charles E.

    Physics of Plasmas, Vol. 28 (2021), Iss. 2

    https://doi.org/10.1063/5.0030117 [Citations: 4]
  9. An extended hydrodynamics model for inertial confinement fusion hohlraums

    Larroche, O.

    The European Physical Journal D, Vol. 75 (2021), Iss. 11

    https://doi.org/10.1140/epjd/s10053-021-00305-2 [Citations: 5]
  10. Numerical Study of Partially Conservative Moment Equations in Kinetic Theory

    Koellermeier, Julian | Torrilhon, Manuel

    Communications in Computational Physics, Vol. 21 (2017), Iss. 4 P.981

    https://doi.org/10.4208/cicp.OA-2016-0053 [Citations: 24]
  11. On Singular Closures for the 5-Moment System in Kinetic Gas Theory

    Schaerer, Roman Pascal | Torrilhon, Manuel

    Communications in Computational Physics, Vol. 17 (2015), Iss. 2 P.371

    https://doi.org/10.4208/cicp.201213.130814a [Citations: 18]
  12. Theory, Numerics and Applications of Hyperbolic Problems II

    Simplified Hyperbolic Moment Equations

    Koellermeier, Julian | Torrilhon, Manuel

    2018

    https://doi.org/10.1007/978-3-319-91548-7_17 [Citations: 0]
  13. A neural network closure for the Euler-Poisson system based on kinetic simulations

    Bois, Léo | Franck, Emmanuel | Navoret, Laurent | Vigon, Vincent

    Kinetic & Related Models, Vol. 15 (2022), Iss. 1 P.49

    https://doi.org/10.3934/krm.2021044 [Citations: 3]
  14. Relativistic causal hydrodynamics derived from Boltzmann equation: A novel reduction theoretical approach

    Tsumura, Kyosuke | Kikuchi, Yuta | Kunihiro, Teiji

    Physical Review D, Vol. 92 (2015), Iss. 8

    https://doi.org/10.1103/PhysRevD.92.085048 [Citations: 20]
  15. Development of 10-moment Fluid Model for Plasma Simulations

    Kuldinow, Derek | Mansour, Adnan R. | Hara, Kentaro

    AIAA SCITECH 2022 Forum, (2022),

    https://doi.org/10.2514/6.2022-1564 [Citations: 0]
  16. Convergence rate for the method of moments with linear closure relations

    Bourgault, Yves | Broizat, Damien | Jabin, Pierre-Emmanuel

    Kinetic & Related Models, Vol. 8 (2015), Iss. 1 P.1

    https://doi.org/10.3934/krm.2015.8.1 [Citations: 3]
  17. Mesoscopic dynamics of fermionic cold atoms — Quantitative analysis of transport coefficients and relaxation times

    Kikuchi, Yuta | Tsumura, Kyosuke | Kunihiro, Teiji

    Physics Letters A, Vol. 380 (2016), Iss. 24 P.2075

    https://doi.org/10.1016/j.physleta.2016.04.027 [Citations: 12]
  18. Application of Gaussian Moment Closure to Microscale Flows with Moving Embedded Boundaries

    McDonald, J. G. | Sachdev, J. S. | Groth, C. P. T.

    AIAA Journal, Vol. 52 (2014), Iss. 9 P.1839

    https://doi.org/10.2514/1.J052576 [Citations: 19]
  19. Derivation of relativistic hydrodynamic equations consistent with relativistic Boltzmann equation by renormalization-group method

    Tsumura, Kyosuke | Kunihiro, Teiji

    The European Physical Journal A, Vol. 48 (2012), Iss. 11

    https://doi.org/10.1140/epja/i2012-12162-x [Citations: 18]
  20. H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory

    Torrilhon, Manuel

    Kinetic & Related Models, Vol. 5 (2012), Iss. 1 P.185

    https://doi.org/10.3934/krm.2012.5.185 [Citations: 15]
  21. Causal hydrodynamics from kinetic theory by doublet scheme in renormalization-group method

    Tsumura, Kyosuke | Kikuchi, Yuta | Kunihiro, Teiji

    Physica D: Nonlinear Phenomena, Vol. 336 (2016), Iss. P.1

    https://doi.org/10.1016/j.physd.2016.06.012 [Citations: 2]
  22. On hyperbolicity of 13-moment system

    Cai, Zhenning | Fan, Yuwei | Li, Ruo

    Kinetic & Related Models, Vol. 7 (2014), Iss. 3 P.415

    https://doi.org/10.3934/krm.2014.7.415 [Citations: 27]
  23. Entropy bounds for the space–time discontinuous Galerkin finite element moment method applied to the BGK–Boltzmann equation

    Abdelmalik, M.R.A. | van der Woude, D.A.M. | van Brummelen, E.H.

    Computer Methods in Applied Mechanics and Engineering, Vol. 398 (2022), Iss. P.115162

    https://doi.org/10.1016/j.cma.2022.115162 [Citations: 1]
  24. Ten-moment fluid model with heat flux closure for gasdynamic flows

    Kuldinow, Derek A. | Yamashita, Yusuke | Mansour, Adnan R. | Hara, Kentaro

    Journal of Computational Physics, Vol. 508 (2024), Iss. P.113030

    https://doi.org/10.1016/j.jcp.2024.113030 [Citations: 0]
  25. Thermodynamically Admissible 13 Moment Equations from the Boltzmann Equation

    Öttinger, Hans Christian

    Physical Review Letters, Vol. 104 (2010), Iss. 12

    https://doi.org/10.1103/PhysRevLett.104.120601 [Citations: 24]
  26. Moment theories for a -dimensional dilute granular gas of Maxwell molecules

    Gupta, Vinay Kumar

    Journal of Fluid Mechanics, Vol. 888 (2020), Iss.

    https://doi.org/10.1017/jfm.2020.20 [Citations: 5]
  27. Nonlinear Closure Relations for Electron Transport in Hydrodynamical Models

    Salhoumi, A.

    Journal of Thermodynamics, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/915297 [Citations: 0]
  28. Higher-order moment models for laminar multiphase flows with accurate particle-stream crossing

    Forgues, François | McDonald, James G.

    International Journal of Multiphase Flow, Vol. 114 (2019), Iss. P.28

    https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.003 [Citations: 8]
  29. Model Reduction of Kinetic Equations by Operator Projection

    Fan, Yuwei | Koellermeier, Julian | Li, Jun | Li, Ruo | Torrilhon, Manuel

    Journal of Statistical Physics, Vol. 162 (2016), Iss. 2 P.457

    https://doi.org/10.1007/s10955-015-1384-9 [Citations: 41]
  30. A multi-species 13-moment model for moderately collisional plasmas

    Miller, S. T. | Shumlak, U.

    Physics of Plasmas, Vol. 23 (2016), Iss. 8

    https://doi.org/10.1063/1.4960041 [Citations: 19]
  31. Globally Hyperbolic Regularization of Grad's Moment System

    Cai, Zhenning | Fan, Yuwei | Li, Ruo

    Communications on Pure and Applied Mathematics, Vol. 67 (2014), Iss. 3 P.464

    https://doi.org/10.1002/cpa.21472 [Citations: 80]
  32. Using the maximum entropy distribution to describe electrons in reconnecting current sheets

    Ng, Jonathan | Hakim, Ammar | Bhattacharjee, A.

    Physics of Plasmas, Vol. 25 (2018), Iss. 8

    https://doi.org/10.1063/1.5041758 [Citations: 10]
  33. Dimension-Reduced Hyperbolic Moment Method for the Boltzmann Equation with BGK-Type Collision

    Cai, Zhenning | Fan, Yuwei | Li, Ruo | Qiao, Zhonghua

    Communications in Computational Physics, Vol. 15 (2014), Iss. 5 P.1368

    https://doi.org/10.4208/cicp.220313.281013a [Citations: 16]
  34. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods

    Koellermeier, Julian | Pascal Schaerer, Roman | Torrilhon, Manuel

    Kinetic & Related Models, Vol. 7 (2014), Iss. 3 P.531

    https://doi.org/10.3934/krm.2014.7.531 [Citations: 37]
  35. Quantum hydrodynamic model by moment closure of Wigner equation

    Cai, Zhenning | Fan, Yuwei | Li, Ruo | Lu, Tiao | Wang, Yanli

    Journal of Mathematical Physics, Vol. 53 (2012), Iss. 10

    https://doi.org/10.1063/1.4748971 [Citations: 18]
  36. Numerical Regularized Moment Method For High Mach Number Flow

    Cai, Zhenning | Li, Ruo | Wang, Yanli

    Communications in Computational Physics, Vol. 11 (2012), Iss. 5 P.1415

    https://doi.org/10.4208/cicp.050111.140711a [Citations: 25]
  37. High-order finite element method for plasma modeling

    Shumlak, U. | Lilly, R. | Miller, S. | Reddell, N. | Sousa, E.

    2013 19th IEEE Pulsed Power Conference (PPC), (2013), P.1

    https://doi.org/10.1109/PPC.2013.6627593 [Citations: 2]
  38. Affordable robust moment closures for CFD based on the maximum-entropy hierarchy

    McDonald, James | Torrilhon, Manuel

    Journal of Computational Physics, Vol. 251 (2013), Iss. P.500

    https://doi.org/10.1016/j.jcp.2013.05.046 [Citations: 62]
  39. Reconstruction of Electron and Ion Distribution Functions in a Magnetotail Reconnection Diffusion Region

    Ng, Jonathan | Chen, Li‐Jen | Hakim, Ammar | Bhattacharjee, Amitava

    Journal of Geophysical Research: Space Physics, Vol. 125 (2020), Iss. 7

    https://doi.org/10.1029/2020JA027879 [Citations: 0]
  40. Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution

    McDonald, James G. | Groth, Clinton P. T.

    Continuum Mechanics and Thermodynamics, Vol. 25 (2013), Iss. 5 P.573

    https://doi.org/10.1007/s00161-012-0252-y [Citations: 42]