Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation

Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation

Year:    2010

Communications in Computational Physics, Vol. 8 (2010), Iss. 5 : pp. 1016–1051

Abstract

In this paper, we investigate initial boundary value problems of the space-time fractional diffusion equation and its numerical solutions. Two definitions, i.e., Riemann-Liouville definition and Caputo one, of the fractional derivative are considered in parallel. In both cases, we establish the well-posedness of the weak solution. Moveover, based on the proposed weak formulation, we construct an efficient spectral method for numerical approximations of the weak solution. The main contribution of this work are threefold: First, a theoretical framework for the variational solutions of the space-time fractional diffusion equation is developed. We find suitable functional spaces and norms in which the space-time fractional diffusion problem can be formulated into an elliptic weak problem, and the existence and uniqueness of the weak solution are then proved by using existing theory for elliptic problems. Secondly, we show that in the case of Riemann-Liouville definition, the well-posedness of the space-time fractional diffusion equation does not require any initial conditions. This contrasts with the case of Caputo definition, in which the initial condition has to be integrated into the weak formulation in order to establish the well-posedness. Finally, thanks to the weak formulation, we are able to construct an efficient numerical method for solving the space-time fractional diffusion problem.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.020709.221209a

Communications in Computational Physics, Vol. 8 (2010), Iss. 5 : pp. 1016–1051

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    36

Keywords:   

  1. Alternating direction multiplier method to estimate an unknown source term in the time-fractional diffusion equation

    Oulmelk, A. | Afraites, L. | Hadri, A. | Zaky, M.A. | Hendy, A.S.

    Computers & Mathematics with Applications, Vol. 156 (2024), Iss. P.195

    https://doi.org/10.1016/j.camwa.2023.12.027 [Citations: 2]
  2. On the Existence and Stability of Positive Solutions of Eigenvalue Problems for a Class of P-Laplacian ψ -Caputo Fractional Integro-Differential Equations

    Awad, Yahia | Pandir, Yusuf

    Journal of Mathematics, Vol. 2023 (2023), Iss. P.1

    https://doi.org/10.1155/2023/3458858 [Citations: 5]
  3. Fast finite volume methods for space-fractional diffusion equations

    Wang, Hong | Cheng, Aijie | Wang, Kaixin

    Discrete and Continuous Dynamical Systems - Series B, Vol. 20 (2015), Iss. 5 P.1427

    https://doi.org/10.3934/dcdsb.2015.20.1427 [Citations: 17]
  4. Fourth order finite difference schemes for time–space fractional sub-diffusion equations

    Pang, Hong-Kui | Sun, Hai-Wei

    Computers & Mathematics with Applications, Vol. 71 (2016), Iss. 6 P.1287

    https://doi.org/10.1016/j.camwa.2016.02.011 [Citations: 27]
  5. A numerical study of fractional linear algebraic systems

    Lorin, Emmanuel | Tian, Simon

    Mathematics and Computers in Simulation, Vol. 182 (2021), Iss. P.495

    https://doi.org/10.1016/j.matcom.2020.11.010 [Citations: 4]
  6. Log orthogonal functions: approximation properties and applications

    Chen, Sheng | Shen, Jie

    IMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 1 P.712

    https://doi.org/10.1093/imanum/draa087 [Citations: 15]
  7. Approximation of the Riesz–Caputo Derivative by Cubic Splines

    Pitolli, Francesca | Sorgentone, Chiara | Pellegrino, Enza

    Algorithms, Vol. 15 (2022), Iss. 2 P.69

    https://doi.org/10.3390/a15020069 [Citations: 19]
  8. A Finite Element Method for the Multiterm Time-Space Riesz Fractional Advection-Diffusion Equations in Finite Domain

    Zhao, Jingjun | Xiao, Jingyu | Xu, Yang

    Abstract and Applied Analysis, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/868035 [Citations: 7]
  9. Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations

    Ali, Khalid K. | Abd El Salam, Mohamed A. | Mohamed, Mohamed S.

    AIMS Mathematics, Vol. 7 (2022), Iss. 5 P.7759

    https://doi.org/10.3934/math.2022436 [Citations: 5]
  10. An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation

    Zhai, Shuying | Feng, Xinlong | He, Yinnian

    Journal of Computational Physics, Vol. 269 (2014), Iss. P.138

    https://doi.org/10.1016/j.jcp.2014.03.020 [Citations: 67]
  11. A Fractional B-spline Collocation Method for the Numerical Solution of Fractional Predator-Prey Models

    Pitolli, Francesca

    Fractal and Fractional, Vol. 2 (2018), Iss. 1 P.13

    https://doi.org/10.3390/fractalfract2010013 [Citations: 27]
  12. A modified trigonometric cubic B-spline collocation technique for solving the time-fractional diffusion equation

    Dhiman, Neeraj | Huntul, M.J. | Tamsir, Mohammad

    Engineering Computations, Vol. 38 (2021), Iss. 7 P.2921

    https://doi.org/10.1108/EC-06-2020-0327 [Citations: 17]
  13. Fast calculation based on a spatial two‐grid finite element algorithm for a nonlinear space–time fractional diffusion model

    Liu, Yang | Liu, Nan | Li, Hong | Wang, Jinfeng

    Numerical Methods for Partial Differential Equations, Vol. 36 (2020), Iss. 6 P.1904

    https://doi.org/10.1002/num.22509 [Citations: 8]
  14. A fractional spectral method with applications to some singular problems

    Hou, Dianming | Xu, Chuanju

    Advances in Computational Mathematics, Vol. 43 (2017), Iss. 5 P.911

    https://doi.org/10.1007/s10444-016-9511-y [Citations: 45]
  15. Accurate and efficient algorithms with unconditional energy stability for the time fractional Cahn–Hilliard and Allen–Cahn equations

    Liu, Zhengguang | Li, Xiaoli | Huang, Jian

    Numerical Methods for Partial Differential Equations, Vol. 37 (2021), Iss. 3 P.2613

    https://doi.org/10.1002/num.22752 [Citations: 7]
  16. Existence of solution for 2-D time-fractional differential equations with a boundary integral condition

    Kasmi, Lotfi | Guerfi, Amara | Mesloub, Said

    Advances in Difference Equations, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1186/s13662-019-2444-2 [Citations: 7]
  17. Finite volume element method and its stability analysis for analyzing the behavior of sub-diffusion problems

    Sayevand, K. | Arjang, F.

    Applied Mathematics and Computation, Vol. 290 (2016), Iss. P.224

    https://doi.org/10.1016/j.amc.2016.06.008 [Citations: 4]
  18. Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Bueno-Orovio, Alfonso | Kay, David | Burrage, Kevin

    BIT Numerical Mathematics, Vol. 54 (2014), Iss. 4 P.937

    https://doi.org/10.1007/s10543-014-0484-2 [Citations: 270]
  19. Least-Squares Spectral Method for the solution of a fractional advection–dispersion equation

    Carella, Alfredo Raúl | Dorao, Carlos Alberto

    Journal of Computational Physics, Vol. 232 (2013), Iss. 1 P.33

    https://doi.org/10.1016/j.jcp.2012.04.050 [Citations: 31]
  20. A New Spectral Method Using Nonstandard Singular Basis Functions for Time-Fractional Differential Equations

    Liu, Wenjie | Wang, Li-Lian | Xiang, Shuhuang

    Communications on Applied Mathematics and Computation, Vol. 1 (2019), Iss. 2 P.207

    https://doi.org/10.1007/s42967-019-00012-1 [Citations: 7]
  21. A Galerkin FEM for Riesz space-fractional CNLS

    Zhu, Xiaogang | Nie, Yufeng | Yuan, Zhanbin | Wang, Jungang | Yang, Zongze

    Advances in Difference Equations, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1186/s13662-019-2278-y [Citations: 1]
  22. Domain decomposition methods for space fractional partial differential equations

    Jiang, Yingjun | Xu, Xuejun

    Journal of Computational Physics, Vol. 350 (2017), Iss. P.573

    https://doi.org/10.1016/j.jcp.2017.08.066 [Citations: 1]
  23. Existence and Uniqueness of the Solution for an Inverse Problem of a Fractional Diffusion Equation with Integral Condition

    Oussaeif, Taki-Eddine | Antara, Benaoua | Ouannas, Adel | Batiha, Iqbal M. | Saad, Khaled M. | Jahanshahi, Hadi | Aljuaid, Awad M. | Aly, Ayman A. | Youssri, Youssri Hassan

    Journal of Function Spaces, Vol. 2022 (2022), Iss. P.1

    https://doi.org/10.1155/2022/7667370 [Citations: 5]
  24. Mixed problem with an pure integral two-space-variables condition for a third order fractional parabolic equation

    SOAMPA, Bangan | DJIBIBE , Moussa Zakari

    Malaya Journal of Matematik, Vol. 8 (2020), Iss. 1 P.258

    https://doi.org/10.26637/MJM0801/0044 [Citations: 0]
  25. A Parallel Spectral Element Method for Fractional Lorenz System

    Su, Yanhui

    Discrete Dynamics in Nature and Society, Vol. 2015 (2015), Iss. P.1

    https://doi.org/10.1155/2015/682140 [Citations: 1]
  26. A preconditioned Fast Finite Difference Method for Space-Time Fractional Partial Differential Equations

    Fu, Hongfei | Wang, Hong

    Fractional Calculus and Applied Analysis, Vol. 20 (2017), Iss. 1 P.88

    https://doi.org/10.1515/fca-2017-0005 [Citations: 35]
  27. Semi-implicit Galerkin–Legendre Spectral Schemes for Nonlinear Time-Space Fractional Diffusion–Reaction Equations with Smooth and Nonsmooth Solutions

    Zaky, Mahmoud A. | Hendy, Ahmed S. | Macías-Díaz, Jorge E.

    Journal of Scientific Computing, Vol. 82 (2020), Iss. 1

    https://doi.org/10.1007/s10915-019-01117-8 [Citations: 66]
  28. Uniformly Stable Explicitly Solvable Finite Difference Method for Fractional Diffusion Equations

    Rui, Hongxing | Huang, Jian

    East Asian Journal on Applied Mathematics, Vol. 5 (2015), Iss. 1 P.29

    https://doi.org/10.4208/eajam.030614.051114a [Citations: 4]
  29. A Nonlinear Fractional Problem with a Second Kind Integral Condition for Time-Fractional Partial Differential Equation

    Abdelouahab, Benbrahim | Oussaeif, Taki-Eddine | Ouannas, Adel | Saad, Khaled M. | Jahanshahi, Hadi | Diar, Ahmed | Aljuaid, Awad M. | Aly, Ayman A. | Nashine, Hemant Kumar

    Journal of Function Spaces, Vol. 2022 (2022), Iss. P.1

    https://doi.org/10.1155/2022/2913587 [Citations: 2]
  30. A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative

    Mao, Zhiping | Karniadakis, George Em

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 1 P.24

    https://doi.org/10.1137/16M1103622 [Citations: 73]
  31. A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions

    Gao, Guang-hua | Sun, Zhi-zhong | Zhang, Ya-nan

    Journal of Computational Physics, Vol. 231 (2012), Iss. 7 P.2865

    https://doi.org/10.1016/j.jcp.2011.12.028 [Citations: 100]
  32. A posteriori error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations

    Tang, Bo | Chen, Yanping | Lin, Xiuxiu

    Applied Mathematics Letters, Vol. 120 (2021), Iss. P.107259

    https://doi.org/10.1016/j.aml.2021.107259 [Citations: 5]
  33. Finite Element Method for Two-Sided Fractional Differential Equations with Variable Coefficients: Galerkin Approach

    Hao, Zhaopeng | Park, Moongyu | Lin, Guang | Cai, Zhiqiang

    Journal of Scientific Computing, Vol. 79 (2019), Iss. 2 P.700

    https://doi.org/10.1007/s10915-018-0869-5 [Citations: 20]
  34. Numerical simulations of 2D fractional subdiffusion problems

    Brunner, Hermann | Ling, Leevan | Yamamoto, Masahiro

    Journal of Computational Physics, Vol. 229 (2010), Iss. 18 P.6613

    https://doi.org/10.1016/j.jcp.2010.05.015 [Citations: 99]
  35. Optimal error estimate of the Legendre spectral approximation for space-fractional reaction–advection–diffusion equation

    Chen, Wenping | Lü, Shujuan | Chen, Hu | Liu, Haiyu

    Advances in Difference Equations, Vol. 2018 (2018), Iss. 1

    https://doi.org/10.1186/s13662-018-1572-4 [Citations: 3]
  36. Identification of the diffusion coefficient in a time fractional diffusion equation

    Salehi Shayegan, Amir Hossein | Zakeri, Ali | Bodaghi, Soheila | Heshmati, M.

    Journal of Inverse and Ill-posed Problems, Vol. 28 (2020), Iss. 2 P.299

    https://doi.org/10.1515/jiip-2018-0109 [Citations: 0]
  37. An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations

    Wang, Hong | Wang, Kaixin

    Journal of Computational Physics, Vol. 230 (2011), Iss. 21 P.7830

    https://doi.org/10.1016/j.jcp.2011.07.003 [Citations: 99]
  38. A priori estimates for weak solution for a time-fractional nonlinear reaction-diffusion equations with an integral condition

    Taki-Eddine, Oussaeif | Abdelfatah, Bouziani

    Chaos, Solitons & Fractals, Vol. 103 (2017), Iss. P.79

    https://doi.org/10.1016/j.chaos.2017.05.035 [Citations: 10]
  39. Hermite Pseudospectral Method for the Time Fractional Diffusion Equation with Variable Coefficients

    Liu, Zeting | Lü, Shujuan

    International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 18 (2017), Iss. 5 P.385

    https://doi.org/10.1515/ijnsns-2016-0116 [Citations: 2]
  40. Fractional pseudo-spectral methods for distributed-order fractional PDEs

    Kharazmi, Ehsan | Zayernouri, Mohsen

    International Journal of Computer Mathematics, Vol. 95 (2018), Iss. 6-7 P.1340

    https://doi.org/10.1080/00207160.2017.1421949 [Citations: 28]
  41. Fractional Spectral Collocation Method

    Zayernouri, Mohsen | Karniadakis, George Em

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 1 P.A40

    https://doi.org/10.1137/130933216 [Citations: 202]
  42. A space-time spectral method for the time fractional diffusion optimal control problems

    Ye, Xingyang | Xu, Chuanju

    Advances in Difference Equations, Vol. 2015 (2015), Iss. 1

    https://doi.org/10.1186/s13662-015-0489-4 [Citations: 12]
  43. Convergence analysis of moving finite element methods for space fractional differential equations

    Ma, Jingtang | Liu, Jinqiang | Zhou, Zhiqiang

    Journal of Computational and Applied Mathematics, Vol. 255 (2014), Iss. P.661

    https://doi.org/10.1016/j.cam.2013.06.021 [Citations: 40]
  44. Quasi solution of a backward space fractional diffusion equation

    Salehi Shayegan, Amir Hossein | Zakeri, Ali

    Journal of Inverse and Ill-posed Problems, Vol. 27 (2019), Iss. 6 P.795

    https://doi.org/10.1515/jiip-2018-0042 [Citations: 3]
  45. Distributed optimal control problems driven by space-time fractional parabolic equations

    Mehandiratta, Vaibhav | Mehra, Mani | Leugering, Günter

    Control and Cybernetics, Vol. 51 (2022), Iss. 2 P.191

    https://doi.org/10.2478/candc-2022-0014 [Citations: 4]
  46. The stability and convergence analysis of finite difference methods for the fractional neutron diffusion equation

    Yin, Daopeng | Xie, Yingying | Mei, Liquan

    Advances in Computational Mathematics, Vol. 49 (2023), Iss. 5

    https://doi.org/10.1007/s10444-023-10070-y [Citations: 0]
  47. Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems

    Legendre Collocation Spectral Method for Solving Space Fractional Nonlinear Fisher’s Equation

    Liu, Zeting | Lv, Shujuan | Li, Xiaocui

    2016

    https://doi.org/10.1007/978-981-10-2663-8_26 [Citations: 1]
  48. Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation

    Zhang, Lu | Zhou, Zhaojie

    Applied Numerical Mathematics, Vol. 143 (2019), Iss. P.247

    https://doi.org/10.1016/j.apnum.2019.04.003 [Citations: 21]
  49. θschemes for finite element discretization of the space–time fractional diffusion equations

    Guan, Qingguang | Gunzburger, Max

    Journal of Computational and Applied Mathematics, Vol. 288 (2015), Iss. P.264

    https://doi.org/10.1016/j.cam.2015.04.032 [Citations: 18]
  50. Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order

    Zhao, Tinggang | Wu, Yujiang

    Symmetry, Vol. 13 (2021), Iss. 5 P.872

    https://doi.org/10.3390/sym13050872 [Citations: 5]
  51. Polynomial spectral collocation method for space fractional advection–diffusion equation

    Tian, WenYi | Deng, Weihua | Wu, Yujiang

    Numerical Methods for Partial Differential Equations, Vol. 30 (2014), Iss. 2 P.514

    https://doi.org/10.1002/num.21822 [Citations: 50]
  52. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

    Fast Spectral Methods for Temporally-Distributed Fractional PDEs

    Samiee, Mehdi | Kharazmi, Ehsan | Zayernouri, Mohsen

    2017

    https://doi.org/10.1007/978-3-319-65870-4_47 [Citations: 2]
  53. The finite difference/finite volume method for solving the fractional diffusion equation

    Zhang, Tie | Guo, Qingxin

    Journal of Computational Physics, Vol. 375 (2018), Iss. P.120

    https://doi.org/10.1016/j.jcp.2018.08.033 [Citations: 9]
  54. Block preconditioning strategies for time–space fractional diffusion equations

    Chen, Hao | Zhang, Tongtong | Lv, Wen

    Applied Mathematics and Computation, Vol. 337 (2018), Iss. P.41

    https://doi.org/10.1016/j.amc.2018.05.001 [Citations: 3]
  55. Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions

    Guo, Boling | Xu, Qiang | Yin, Zhe

    Applied Mathematics and Mechanics, Vol. 37 (2016), Iss. 3 P.403

    https://doi.org/10.1007/s10483-016-2036-6 [Citations: 9]
  56. Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations

    Zhao, Tinggang | Mao, Zhiping | Karniadakis, George Em

    Computer Methods in Applied Mechanics and Engineering, Vol. 348 (2019), Iss. P.377

    https://doi.org/10.1016/j.cma.2019.01.040 [Citations: 22]
  57. A Petrov–Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations

    Lin, Zeng | Wang, Dongdong | Qi, Dongliang | Deng, Like

    Computational Mechanics, Vol. 66 (2020), Iss. 2 P.323

    https://doi.org/10.1007/s00466-020-01853-x [Citations: 12]
  58. Particle simulation of space–fractional diffusion equations

    Lucchesi, M. | Allouch, S. | Le Maître, O. P. | Mustapha, K. A. | Knio, O. M.

    Computational Particle Mechanics, Vol. 7 (2020), Iss. 3 P.491

    https://doi.org/10.1007/s40571-019-00275-8 [Citations: 6]
  59. Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation

    Ren, Jincheng | Long, Xiaonian | Mao, Shipeng | Zhang, Jiwei

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 3 P.917

    https://doi.org/10.1007/s10915-017-0385-z [Citations: 21]
  60. Schwartz duality of the Dirac delta function for the Chebyshev collocation approximation to the fractional advection equation

    Yang, He | Guo, Jingyang | Jung, Jae-Hun

    Applied Mathematics Letters, Vol. 64 (2017), Iss. P.205

    https://doi.org/10.1016/j.aml.2016.09.009 [Citations: 4]
  61. Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations

    Bai, Zhong-Zhi | Lu, Kang-Ya

    Applied Numerical Mathematics, Vol. 163 (2021), Iss. P.126

    https://doi.org/10.1016/j.apnum.2021.01.011 [Citations: 13]
  62. An advanced numerical modeling for Riesz space fractional advection–dispersion equations by a meshfree approach

    Yuan, Z.B. | Nie, Y.F. | Liu, F. | Turner, I. | Zhang, G.Y. | Gu, Y.T.

    Applied Mathematical Modelling, Vol. 40 (2016), Iss. 17-18 P.7816

    https://doi.org/10.1016/j.apm.2016.03.036 [Citations: 23]
  63. A numerical solution for a quasi solution of the time-fractional stochastic backward parabolic equation

    Nasiri, T. | Zakeri, A. | Aminataei, A.

    Journal of Computational and Applied Mathematics, Vol. 437 (2024), Iss. P.115441

    https://doi.org/10.1016/j.cam.2023.115441 [Citations: 1]
  64. Solution of the backward problem for the space-time fractional diffusion equation related to the release history of a groundwater contaminant

    Salehi Shayegan, Amir Hossein | Zakeri, Ali | Salehi Shayegan, Adib

    Journal of Inverse and Ill-posed Problems, Vol. 0 (2023), Iss. 0

    https://doi.org/10.1515/jiip-2022-0054 [Citations: 1]
  65. A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions

    Ye, Xingyang | Xu, Chuanju

    AIMS Mathematics, Vol. 6 (2021), Iss. 11 P.12028

    https://doi.org/10.3934/math.2021697 [Citations: 5]
  66. Non-polynomial Spectral-Galerkin Method for Time-Fractional Diffusion Equation on Unbounded Domain

    Darvishi, H. | Kerayechian, A. | Gachpazan, M.

    International Journal of Applied and Computational Mathematics, Vol. 8 (2022), Iss. 4

    https://doi.org/10.1007/s40819-022-01403-4 [Citations: 0]
  67. A new error estimate of a finite difference scheme for a fractional transport-advection equation with zero order term

    Mehri, Allaoua | Bouhadjera, Hakima | Abdo, Mohammed S. | Alghamdi, Najla | Idris, Sahar Ahmed

    Alexandria Engineering Journal, Vol. 110 (2025), Iss. P.186

    https://doi.org/10.1016/j.aej.2024.10.002 [Citations: 0]
  68. Fundamental kernel-based method for backward space–time fractional diffusion problem

    Dou, F.F. | Hon, Y.C.

    Computers & Mathematics with Applications, Vol. 71 (2016), Iss. 1 P.356

    https://doi.org/10.1016/j.camwa.2015.11.023 [Citations: 31]
  69. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

    Using PGD to Solve Nonseparable Fractional Derivative Elliptic Problems

    Lin, Shimin | Azaiez, Mejdi | Xu, Chuanju

    2017

    https://doi.org/10.1007/978-3-319-65870-4_13 [Citations: 0]
  70. An hp-version of the discontinuous Galerkin method for fractional integro-differential equations with weakly singular kernels

    Chen, Yanping | Chen, Zhenrong | Huang, Yunqing

    BIT Numerical Mathematics, Vol. 64 (2024), Iss. 3

    https://doi.org/10.1007/s10543-024-01026-9 [Citations: 0]
  71. Solvability of a solution and controllability of partial fractional differential systems

    Imad, Rezzoug | Taki-Eddine, Oussaeif

    Journal of Interdisciplinary Mathematics, Vol. 24 (2021), Iss. 5 P.1175

    https://doi.org/10.1080/09720502.2020.1838754 [Citations: 3]
  72. Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layers

    Antoine, X. | Lorin, E. | Zhang, Y.

    Numerical Algorithms, Vol. 87 (2021), Iss. 1 P.409

    https://doi.org/10.1007/s11075-020-00972-z [Citations: 15]
  73. Existence, uniqueness and numerical solution of a fractional PDE with integral conditions

    Martín-Vaquero, Jesus | Merad, Ahcene

    Nonlinear Analysis: Modelling and Control, Vol. 24 (2019), Iss. 3 P.368

    https://doi.org/10.15388/NA.2019.3.4 [Citations: 3]
  74. The Laguerre-Hermite spectral methods for the time-fractional sub-diffusion equations on unbounded domains

    Yu, Hao | Wu, Boying | Zhang, Dazhi

    Numerical Algorithms, Vol. 82 (2019), Iss. 4 P.1221

    https://doi.org/10.1007/s11075-018-00652-z [Citations: 9]
  75. Spectral and pseudospectral approximations for the time fractional diffusion equation on an unbounded domain

    Chen, Hu | Lü, Shujuan | Chen, Wenping

    Journal of Computational and Applied Mathematics, Vol. 304 (2016), Iss. P.43

    https://doi.org/10.1016/j.cam.2016.03.010 [Citations: 14]
  76. A New Finite Element Analysis for Inhomogeneous Boundary-Value Problems of Space Fractional Differential Equations

    Ma, Jingtang

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 1 P.342

    https://doi.org/10.1007/s10915-015-0082-8 [Citations: 4]
  77. A novel high-order ADI method for 3D fractionalconvection–diffusion equations

    Zhai, Shuying | Gui, Dongwei | Huang, Pengzhan | Feng, Xinlong

    International Communications in Heat and Mass Transfer, Vol. 66 (2015), Iss. P.212

    https://doi.org/10.1016/j.icheatmasstransfer.2015.05.028 [Citations: 14]
  78. A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions

    Rahimkhani, Parisa | Ordokhani, Yadollah

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 1 P.34

    https://doi.org/10.1002/num.22279 [Citations: 46]
  79. Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation

    Stynes, Martin | O'Riordan, Eugene | Gracia, José Luis

    SIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 2 P.1057

    https://doi.org/10.1137/16M1082329 [Citations: 650]
  80. Multilevel Circulant Preconditioner for High-Dimensional Fractional Diffusion Equations

    Lei, Siu-Long | Chen, Xu | Zhang, Xinhe

    East Asian Journal on Applied Mathematics, Vol. 6 (2016), Iss. 2 P.109

    https://doi.org/10.4208/eajam.060815.180116a [Citations: 25]
  81. A new approach for space-time fractional partial differential equations by residual power series method

    Aylin Bayrak, Mine | Demir, Ali

    Applied Mathematics and Computation, Vol. 336 (2018), Iss. P.215

    https://doi.org/10.1016/j.amc.2018.04.032 [Citations: 26]
  82. Inhomogeneous Dirichlet Boundary-Value Problems of Space-Fractional Diffusion Equations and their Finite Element Approximations

    Wang, Hong | Yang, Danping | Zhu, Shengfeng

    SIAM Journal on Numerical Analysis, Vol. 52 (2014), Iss. 3 P.1292

    https://doi.org/10.1137/130932776 [Citations: 67]
  83. Fourier Spectral Methods for Some Linear Stochastic Space-Fractional Partial Differential Equations

    Liu, Yanmei | Khan, Monzorul | Yan, Yubin

    Mathematics, Vol. 4 (2016), Iss. 3 P.45

    https://doi.org/10.3390/math4030045 [Citations: 4]
  84. Fractional Dynamical Systems Solved by a Collocation Method Based on Refinable Spaces

    Pezza, Laura | Di Lillo, Simmaco

    Axioms, Vol. 12 (2023), Iss. 5 P.451

    https://doi.org/10.3390/axioms12050451 [Citations: 0]
  85. An extrapolated finite difference method for two-dimensional fractional boundary value problems with non-smooth solution

    Li, Shengyue | Cao, Wanrong | Hao, Zhaopeng

    International Journal of Computer Mathematics, Vol. 99 (2022), Iss. 2 P.274

    https://doi.org/10.1080/00207160.2021.1907356 [Citations: 4]
  86. A Second-Order Finite Difference Method for Two-Dimensional Fractional Percolation Equations

    Guo, Boling | Xu, Qiang | Zhu, Ailing

    Communications in Computational Physics, Vol. 19 (2016), Iss. 3 P.733

    https://doi.org/10.4208/cicp.011214.140715a [Citations: 6]
  87. Quenching phenomenon in a fractional diffusion equation and its numerical simulation

    Xu, Yufeng

    International Journal of Computer Mathematics, Vol. 95 (2018), Iss. 1 P.98

    https://doi.org/10.1080/00207160.2017.1343473 [Citations: 11]
  88. Fast Numerical Contour Integral Method for Fractional Diffusion Equations

    Pang, Hong-Kui | Sun, Hai-Wei

    Journal of Scientific Computing, Vol. 66 (2016), Iss. 1 P.41

    https://doi.org/10.1007/s10915-015-0012-9 [Citations: 28]
  89. Anomalous and nonergodic multiscale modeling, analyses and algorithms

    Weihua, Deng

    SCIENTIA SINICA Mathematica, Vol. 53 (2023), Iss. 8 P.1039

    https://doi.org/10.1360/SSM-2023-0046 [Citations: 0]
  90. Solving a Class of Time-Fractional Order Par-tial Differential Equations in High Order Scheme

    谭, 海花

    Advances in Applied Mathematics, Vol. 12 (2023), Iss. 10 P.4123

    https://doi.org/10.12677/AAM.2023.1210404 [Citations: 0]
  91. A numerical method for determining a quasi solution of a backward time-fractional diffusion equation

    Salehi Shayegan, A. H. | Zakeri, A.

    Inverse Problems in Science and Engineering, Vol. 26 (2018), Iss. 8 P.1130

    https://doi.org/10.1080/17415977.2017.1384826 [Citations: 9]
  92. Fractional Adams–Bashforth/Moulton methods: An application to the fractional Keller–Segel chemotaxis system

    Zayernouri, Mohsen | Matzavinos, Anastasios

    Journal of Computational Physics, Vol. 317 (2016), Iss. P.1

    https://doi.org/10.1016/j.jcp.2016.04.041 [Citations: 53]
  93. Finite Difference/Element Method for a Two-Dimensional Modified Fractional Diffusion Equation

    Zhang, Na | Deng, Weihua | Wu, Yujiang

    Advances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 04 P.496

    https://doi.org/10.4208/aamm.10-m1210 [Citations: 95]
  94. A space-time spectral method for time-fractional Black-Scholes equation

    An, Xingyu | Liu, Fawang | Zheng, Minling | Anh, Vo V. | Turner, Ian W.

    Applied Numerical Mathematics, Vol. 165 (2021), Iss. P.152

    https://doi.org/10.1016/j.apnum.2021.02.009 [Citations: 25]
  95. Existence and uniqueness of solutions to higher order fractional partial differential equations with purely integral conditions

    Chergui, Djamila | Merad, Ahcene | Pinelas, Sandra

    Analysis, Vol. 43 (2023), Iss. 1 P.1

    https://doi.org/10.1515/anly-2021-0016 [Citations: 0]
  96. Highly accurate technique for solving distributed-order time-fractional-sub-diffusion equations of fourth order

    Abdelkawy, M. A. | Babatin, Mohammed M. | Lopes, António M.

    Computational and Applied Mathematics, Vol. 39 (2020), Iss. 2

    https://doi.org/10.1007/s40314-020-1070-7 [Citations: 10]
  97. A high-order stabilizer-free weak Galerkin finite element method on nonuniform time meshes for subdiffusion problems

    Toprakseven, Şuayip | Dinibutun, Seza

    AIMS Mathematics, Vol. 8 (2023), Iss. 12 P.31022

    https://doi.org/10.3934/math.20231588 [Citations: 3]
  98. Müntz Spectral Methods for the Time-Fractional Diffusion Equation

    Hou, Dianming | Hasan, Mohammad Tanzil | Xu, Chuanju

    Computational Methods in Applied Mathematics, Vol. 18 (2018), Iss. 1 P.43

    https://doi.org/10.1515/cmam-2017-0027 [Citations: 37]
  99. Variational formulation and efficient implementation for solving the tempered fractional problems

    Deng, Weihua | Zhang, Zhijiang

    Numerical Methods for Partial Differential Equations, Vol. 34 (2018), Iss. 4 P.1224

    https://doi.org/10.1002/num.22254 [Citations: 19]
  100. Finite element method for fractional order parabolic obstacle problem with nonlinear source term

    Mehri, Allaoua | Bouhadjera, Hakima | Abdo, Mohammed S. | Alzumi, Hadeel Z. | Shammakh, Wafa

    Partial Differential Equations in Applied Mathematics, Vol. 10 (2024), Iss. P.100721

    https://doi.org/10.1016/j.padiff.2024.100721 [Citations: 0]
  101. An artificial neural network approach to identify the parameter in a nonlinear subdiffusion model

    Oulmelk, A. | Srati, M. | Afraites, L. | Hadri, A.

    Communications in Nonlinear Science and Numerical Simulation, Vol. 125 (2023), Iss. P.107413

    https://doi.org/10.1016/j.cnsns.2023.107413 [Citations: 11]
  102. Towards Perfectly Matched Layers for time-dependent space fractional PDEs

    Antoine, Xavier | Lorin, Emmanuel

    Journal of Computational Physics, Vol. 391 (2019), Iss. P.59

    https://doi.org/10.1016/j.jcp.2019.04.025 [Citations: 21]
  103. Legendre Collocation Solution to Fractional Ordinary Differential Equations

    Zhao, Ting Gang | Zhan, Zi Lang | Huo, Jin Xia | Yang, Zi Guang

    Applied Mechanics and Materials, Vol. 687-691 (2014), Iss. P.601

    https://doi.org/10.4028/www.scientific.net/AMM.687-691.601 [Citations: 0]
  104. Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation

    Li, Limei | Xu, Da

    Journal of Computational Physics, Vol. 236 (2013), Iss. P.157

    https://doi.org/10.1016/j.jcp.2012.11.005 [Citations: 38]
  105. Optimal convergence rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions

    Liu, Fang | Liang, Zongqi | Yan, Yubin

    Journal of Computational and Applied Mathematics, Vol. 352 (2019), Iss. P.409

    https://doi.org/10.1016/j.cam.2018.12.004 [Citations: 6]
  106. Numerical Method for The Time Fractional Fokker-Planck Equation

    Cao, Xue-Nian | Fu, Jiang-Li | Huang, Hu

    Advances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 06 P.848

    https://doi.org/10.4208/aamm.12-12S13 [Citations: 19]
  107. A weak Galerkin finite element method on temporal graded meshes for the multi-term time fractional diffusion equations

    Toprakseven, Şuayip

    Computers & Mathematics with Applications, Vol. 128 (2022), Iss. P.108

    https://doi.org/10.1016/j.camwa.2022.10.012 [Citations: 11]
  108. Fractional Order Systems

    Fractional-order systems, numerical techniques, and applications

    Liu, Fawang | Zhuang, Pinghui | Liu, Qingxia | Zheng, Minling | Anh, Vo V.

    2022

    https://doi.org/10.1016/B978-0-12-824293-3.00010-7 [Citations: 2]
  109. Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order

    Owolabi, Kolade M.

    Communications in Nonlinear Science and Numerical Simulation, Vol. 44 (2017), Iss. P.304

    https://doi.org/10.1016/j.cnsns.2016.08.021 [Citations: 99]
  110. Error estimate on the tanh meshes for the time fractional diffusion equation

    Zhang, Jiali | Huang, Jizu | Wang, Kun | Wang, Xin

    Numerical Methods for Partial Differential Equations, Vol. 37 (2021), Iss. 3 P.2046

    https://doi.org/10.1002/num.22656 [Citations: 4]
  111. Error estimates of a high order numerical method for solving linear fractional differential equations

    Li, Zhiqiang | Yan, Yubin | Ford, Neville J.

    Applied Numerical Mathematics, Vol. 114 (2017), Iss. P.201

    https://doi.org/10.1016/j.apnum.2016.04.010 [Citations: 25]
  112. A unified Petrov–Galerkin spectral method for fractional PDEs

    Zayernouri, Mohsen | Ainsworth, Mark | Karniadakis, George Em

    Computer Methods in Applied Mechanics and Engineering, Vol. 283 (2015), Iss. P.1545

    https://doi.org/10.1016/j.cma.2014.10.051 [Citations: 92]
  113. A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients

    Chen, Hu | Lü, Shujuan | Chen, Wenping

    Journal of Computational and Applied Mathematics, Vol. 330 (2018), Iss. P.380

    https://doi.org/10.1016/j.cam.2017.09.011 [Citations: 29]
  114. Spatiotemporal Dynamics of Fractional Predator–Prey System with Stage Structure for the Predator

    Owolabi, Kolade M. | Atangana, Abdon

    International Journal of Applied and Computational Mathematics, Vol. 3 (2017), Iss. S1 P.903

    https://doi.org/10.1007/s40819-017-0389-2 [Citations: 15]
  115. Inverse coefficient super-linear problem for a time fractional parabolic equation under integral overdetermination conditions

    Benguesmia, Amal | Oussaeif, Taki-Eddine | Rezzoug, Imad

    Mathematica Montisnigri, Vol. 58 (2023), Iss. P.17

    https://doi.org/10.20948/mathmontis-2023-58-2 [Citations: 0]
  116. A-posteriori error estimations based on postprocessing technique for two-sided fractional differential equations

    Mao, Wenting | Wang, Huasheng | Chen, Chuanjun

    Applied Numerical Mathematics, Vol. 167 (2021), Iss. P.73

    https://doi.org/10.1016/j.apnum.2021.04.019 [Citations: 4]
  117. Well-posedness of a kind of nonlinear coupled system of fractional differential equations

    Zhou, XiaoJun | Xu, ChuanJu

    Science China Mathematics, Vol. 59 (2016), Iss. 6 P.1209

    https://doi.org/10.1007/s11425-015-5113-2 [Citations: 7]
  118. Too Much Regularity May Force Too Much Uniqueness

    Stynes, Martin

    Fractional Calculus and Applied Analysis, Vol. 19 (2016), Iss. 6 P.1554

    https://doi.org/10.1515/fca-2016-0080 [Citations: 116]
  119. Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations

    Mao, Zhiping | Chen, Sheng | Shen, Jie

    Applied Numerical Mathematics, Vol. 106 (2016), Iss. P.165

    https://doi.org/10.1016/j.apnum.2016.04.002 [Citations: 80]
  120. Space-Time Petrov–Galerkin FEM for Fractional Diffusion Problems

    Duan, Beiping | Jin, Bangti | Lazarov, Raytcho | Pasciak, Joseph | Zhou, Zhi

    Computational Methods in Applied Mathematics, Vol. 18 (2018), Iss. 1 P.1

    https://doi.org/10.1515/cmam-2017-0026 [Citations: 17]
  121. Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence

    Gao, Guang-Hua | Sun, Hai-Wei | Sun, Zhi-Zhong

    Journal of Computational Physics, Vol. 280 (2015), Iss. P.510

    https://doi.org/10.1016/j.jcp.2014.09.033 [Citations: 95]
  122. High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion

    Zhai, Shuying | Weng, Zhifeng | Gui, Dongwei | Feng, Xinlong

    International Journal of Heat and Mass Transfer, Vol. 84 (2015), Iss. P.440

    https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.028 [Citations: 16]
  123. Efficient spectral–Galerkin methods for fractional partial differential equations with variable coefficients

    Mao, Zhiping | Shen, Jie

    Journal of Computational Physics, Vol. 307 (2016), Iss. P.243

    https://doi.org/10.1016/j.jcp.2015.11.047 [Citations: 78]
  124. Finite Difference Approximation of Fractional Wave Equation with Concentrated Capacity

    Delić, Aleksandra | Jovanović, Boško S.

    Computational Methods in Applied Mathematics, Vol. 17 (2017), Iss. 1 P.33

    https://doi.org/10.1515/cmam-2016-0026 [Citations: 3]
  125. A space–time spectral Petrov–Galerkin method for nonlinear time fractional Korteweg–de Vries–Burgers equations

    Yu, Zhe | Sun, Jiebao | Wu, Boying

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 6 P.4348

    https://doi.org/10.1002/mma.7035 [Citations: 1]
  126. Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain

    Aboelenen, T. | Bakr, S.A. | El-Hawary, H.M.

    International Journal of Computer Mathematics, Vol. 94 (2017), Iss. 3 P.570

    https://doi.org/10.1080/00207160.2015.1119270 [Citations: 6]
  127. Solving Time-Fractional reaction–diffusion systems through a tensor-based parallel algorithm

    Cardone, Angelamaria | De Luca, Pasquale | Galletti, Ardelio | Marcellino, Livia

    Physica A: Statistical Mechanics and its Applications, Vol. 611 (2023), Iss. P.128472

    https://doi.org/10.1016/j.physa.2023.128472 [Citations: 1]
  128. A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation

    Wang, Hong | Du, Ning

    Journal of Computational Physics, Vol. 253 (2013), Iss. P.50

    https://doi.org/10.1016/j.jcp.2013.06.040 [Citations: 57]
  129. A finite element method for time fractional partial differential equations

    Ford, Neville J. | Xiao, Jingyu | Yan, Yubin

    Fractional Calculus and Applied Analysis, Vol. 14 (2011), Iss. 3 P.454

    https://doi.org/10.2478/s13540-011-0028-2 [Citations: 185]
  130. An ADMM approach to a TV model for identifying two coefficients in the time-fractional diffusion system

    Srati, Mohemmad | Oulmelk, Abdessamad | Afraites, Lekbir | Hadri, Aissam

    Fractional Calculus and Applied Analysis, Vol. 26 (2023), Iss. 4 P.1964

    https://doi.org/10.1007/s13540-023-00180-1 [Citations: 1]
  131. A novel finite difference discrete scheme for the time fractional diffusion-wave equation

    Liu, Zhengguang | Cheng, Aijie | Li, Xiaoli

    Applied Numerical Mathematics, Vol. 134 (2018), Iss. P.17

    https://doi.org/10.1016/j.apnum.2018.07.001 [Citations: 19]
  132. A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions

    Wang, Ying | Liu, Fawang | Mei, Liquan | Anh, Vo V.

    Numerical Algorithms, Vol. 86 (2021), Iss. 4 P.1443

    https://doi.org/10.1007/s11075-020-00940-7 [Citations: 11]
  133. Advanced neural network approaches for coupled equations with fractional derivatives

    Alfalqi, Suleman | Boukhari, Boumediene | Bchatnia, Ahmed | Beniani, Abderrahmane

    Boundary Value Problems, Vol. 2024 (2024), Iss. 1

    https://doi.org/10.1186/s13661-024-01899-3 [Citations: 0]
  134. A stable explicitly solvable numerical method for the Riesz fractional advection–dispersion equations

    Zhang, Jingyuan

    Applied Mathematics and Computation, Vol. 332 (2018), Iss. P.209

    https://doi.org/10.1016/j.amc.2018.03.060 [Citations: 3]
  135. An adaptive finite element method for Riesz fractional partial integro-differential equations

    Adel, E. | El-Kalla, I. L. | Elsaid, A. | Sameeh, M.

    Mathematical Sciences, Vol. (2023), Iss.

    https://doi.org/10.1007/s40096-023-00518-z [Citations: 3]
  136. A parallel algorithm for space-time-fractional partial differential equations

    Lorin, E.

    Advances in Difference Equations, Vol. 2020 (2020), Iss. 1

    https://doi.org/10.1186/s13662-020-02744-4 [Citations: 4]
  137. Numerical algorithm to Caputo type time–space fractional partial differential equations with variable coefficients

    Kheybari, Samad

    Mathematics and Computers in Simulation, Vol. 182 (2021), Iss. P.66

    https://doi.org/10.1016/j.matcom.2020.10.018 [Citations: 13]
  138. A priori and a posteriori error estimates of a space–time Petrov–Galerkin spectral method for time-fractional diffusion equation

    Tang, Bo | Mao, Wenting | Zeng, Zhankuan

    Mathematics and Computers in Simulation, Vol. 219 (2024), Iss. P.559

    https://doi.org/10.1016/j.matcom.2024.01.002 [Citations: 2]
  139. Fractional Pseudospectral Schemes with Equivalence for Fractional Differential Equations

    Tang, Xiaojun | Shi, Yang | Xu, Heyong

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 3 P.A966

    https://doi.org/10.1137/15M1061496 [Citations: 7]
  140. Moving Finite Element Methods for a System of Semi-Linear Fractional Diffusion Equations

    Ma, Jingtang | Zhou, Zhiqiang

    Advances in Applied Mathematics and Mechanics, Vol. 8 (2016), Iss. 6 P.911

    https://doi.org/10.4208/aamm.2015.m1065 [Citations: 1]
  141. Fractional spectral collocation methods for linear and nonlinear variable order FPDEs

    Zayernouri, Mohsen | Karniadakis, George Em

    Journal of Computational Physics, Vol. 293 (2015), Iss. P.312

    https://doi.org/10.1016/j.jcp.2014.12.001 [Citations: 156]
  142. An Artificial Neural Network Approach for Solving Space Fractional Differential Equations

    Dai, Pingfei | Yu, Xiangyu

    Symmetry, Vol. 14 (2022), Iss. 3 P.535

    https://doi.org/10.3390/sym14030535 [Citations: 10]
  143. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    Jiao, Yujian | Wang, Li-Lian | Huang, Can

    Journal of Computational Physics, Vol. 305 (2016), Iss. P.1

    https://doi.org/10.1016/j.jcp.2015.10.029 [Citations: 28]
  144. A Legendre spectral-finite difference method for Caputo–Fabrizio time-fractional distributed-order diffusion equation

    Fardi, M. | Alidousti, J.

    Mathematical Sciences, Vol. 16 (2022), Iss. 4 P.417

    https://doi.org/10.1007/s40096-021-00430-4 [Citations: 6]
  145. Fractional Sensitivity Equation Method: Application to Fractional Model Construction

    Kharazmi, Ehsan | Zayernouri, Mohsen

    Journal of Scientific Computing, Vol. 80 (2019), Iss. 1 P.110

    https://doi.org/10.1007/s10915-019-00935-0 [Citations: 15]
  146. Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation

    Li, Limei | Xu, Da | Luo, Man

    Journal of Computational Physics, Vol. 255 (2013), Iss. P.471

    https://doi.org/10.1016/j.jcp.2013.08.031 [Citations: 68]
  147. Optimization method for determining the source term in fractional diffusion equation

    Ma, Yong-Ki | Prakash, P. | Deiveegan, A.

    Mathematics and Computers in Simulation, Vol. 155 (2019), Iss. P.168

    https://doi.org/10.1016/j.matcom.2018.03.003 [Citations: 8]
  148. Circulant preconditioners for a kind of spatial fractional diffusion equations

    Fang, Zhi-Wei | Ng, Michael K. | Sun, Hai-Wei

    Numerical Algorithms, Vol. 82 (2019), Iss. 2 P.729

    https://doi.org/10.1007/s11075-018-0623-y [Citations: 12]
  149. Numerical methods for fractional partial differential equations

    Li, Changpin | Chen, An

    International Journal of Computer Mathematics, Vol. 95 (2018), Iss. 6-7 P.1048

    https://doi.org/10.1080/00207160.2017.1343941 [Citations: 91]
  150. Error estimates of a spectral Petrov–Galerkin method for two-sided fractional reaction–diffusion equations

    Hao, Zhaopeng | Lin, Guang | Zhang, Zhongqiang

    Applied Mathematics and Computation, Vol. 374 (2020), Iss. P.125045

    https://doi.org/10.1016/j.amc.2020.125045 [Citations: 6]
  151. Müntz Legendre polynomials: Approximation properties and applications

    Cui, Tengteng | Xu, Chuanju

    Mathematics of Computation, Vol. (2024), Iss.

    https://doi.org/10.1090/mcom/3987 [Citations: 2]
  152. A direct O(Nlog2N) finite difference method for fractional diffusion equations

    Wang, Hong | Wang, Kaixin | Sircar, Treena

    Journal of Computational Physics, Vol. 229 (2010), Iss. 21 P.8095

    https://doi.org/10.1016/j.jcp.2010.07.011 [Citations: 269]
  153. Stability and Convergence of an Effective Finite Element Method for Multiterm Fractional Partial Differential Equations

    Zhao, Jingjun | Xiao, Jingyu | Xu, Yang

    Abstract and Applied Analysis, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/857205 [Citations: 2]
  154. Coupling RBF-based meshless method and Landweber iteration algorithm for approximating a space-dependent source term in a time fractional diffusion equation

    Salehi Shayegan, Amir Hossein

    Journal of Computational and Applied Mathematics, Vol. 417 (2023), Iss. P.114531

    https://doi.org/10.1016/j.cam.2022.114531 [Citations: 6]
  155. Error analysis of spectral approximation for space–time fractional optimal control problems with control and state constraints

    Chen, Yanping | Lin, Xiuxiu | Huang, Yunqing

    Journal of Computational and Applied Mathematics, Vol. 413 (2022), Iss. P.114293

    https://doi.org/10.1016/j.cam.2022.114293 [Citations: 3]
  156. Gauss‐Lobatto‐Legendre‐Birkhoff pseudospectral approximations for the multi‐term time fractional diffusion‐wave equation with Neumann boundaryconditions

    Liu, Haiyu | Lü, Shujuan

    Numerical Methods for Partial Differential Equations, Vol. 34 (2018), Iss. 6 P.2217

    https://doi.org/10.1002/num.22284 [Citations: 5]
  157. Exponentially accurate spectral and spectral element methods for fractional ODEs

    Zayernouri, Mohsen | Karniadakis, George Em

    Journal of Computational Physics, Vol. 257 (2014), Iss. P.460

    https://doi.org/10.1016/j.jcp.2013.09.039 [Citations: 138]
  158. A new computational method based on fractional Lagrange functions to solve multi-term fractional differential equations

    Delkhosh, Mehdi | Parand, Kourosh

    Numerical Algorithms, Vol. 88 (2021), Iss. 2 P.729

    https://doi.org/10.1007/s11075-020-01055-9 [Citations: 10]
  159. Fourth Order Difference Approximations for Space Riemann-Liouville Derivatives Based on Weighted and Shifted Lubich Difference Operators

    Chen, Minghua | Deng, Weihua

    Communications in Computational Physics, Vol. 16 (2014), Iss. 2 P.516

    https://doi.org/10.4208/cicp.120713.280214a [Citations: 44]
  160. A Fast O(N log N) Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation

    Basu, Treena

    Mathematics, Vol. 3 (2015), Iss. 4 P.1032

    https://doi.org/10.3390/math3041032 [Citations: 3]
  161. A mixed‐type Galerkin variational formulation and fast algorithms for variable‐coefficient fractional diffusion equations

    Li, Yongshan | Chen, Huanzhen | Wang, Hong

    Mathematical Methods in the Applied Sciences, Vol. 40 (2017), Iss. 14 P.5018

    https://doi.org/10.1002/mma.4367 [Citations: 24]
  162. Application of low-dimensional finite element method to fractional diffusion equation

    Liu, Jincun | Li, Hong | Fang, Zhichao | Liu, Yang

    International Journal of Modeling, Simulation, and Scientific Computing, Vol. 05 (2014), Iss. 04 P.1450022

    https://doi.org/10.1142/S1793962314500226 [Citations: 6]
  163. Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations

    Zhao, Jingjun | Zhao, Wenjiao | Xu, Yang

    Applied Mathematics and Computation, Vol. 442 (2023), Iss. P.127745

    https://doi.org/10.1016/j.amc.2022.127745 [Citations: 1]
  164. Weak Solvability of the Variable-Order Subdiffusion Equation

    Hulianytskyi, Andrii

    Fractional Calculus and Applied Analysis, Vol. 23 (2020), Iss. 3 P.920

    https://doi.org/10.1515/fca-2020-0047 [Citations: 2]
  165. High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation

    Ding, Hengfei | Li, Changpin

    Communications in Nonlinear Science and Numerical Simulation, Vol. 120 (2023), Iss. P.107160

    https://doi.org/10.1016/j.cnsns.2023.107160 [Citations: 9]
  166. A unified spectral method for FPDEs with two-sided derivatives; Part II: Stability, and error analysis

    Samiee, Mehdi | Zayernouri, Mohsen | Meerschaert, Mark M.

    Journal of Computational Physics, Vol. 385 (2019), Iss. P.244

    https://doi.org/10.1016/j.jcp.2018.07.041 [Citations: 16]
  167. Petrov--Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations

    Kharazmi, Ehsan | Zayernouri, Mohsen | Karniadakis, George Em

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 3 P.A1003

    https://doi.org/10.1137/16M1073121 [Citations: 61]
  168. A Spectral Penalty Method for Two-Sided Fractional Differential Equations with General Boundary Conditions

    Wang, Nan | Mao, Zhiping | Huang, Chengming | Karniadakis, George Em

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 3 P.A1840

    https://doi.org/10.1137/18M1200142 [Citations: 6]
  169. Numerical simulation for classes of one‐ and two‐dimensional multi‐term time‐fractional diffusion and diffusion‐wave equation based on shifted Jacobi Galerkin scheme

    Alsuyuti, Muhammad M. | Doha, Eid H. | Ezz‐Eldien, Samer S.

    Mathematical Methods in the Applied Sciences, Vol. (2023), Iss.

    https://doi.org/10.1002/mma.9659 [Citations: 3]
  170. An efficient matrix approach for the numerical solutions of electromagnetic wave model based on fractional partial derivative

    Patel, Vijay Kumar | Bahuguna, Dhirendra

    Applied Numerical Mathematics, Vol. 169 (2021), Iss. P.1

    https://doi.org/10.1016/j.apnum.2021.06.007 [Citations: 5]
  171. Determination of a Nonlinear Coefficient in a Time-Fractional Diffusion Equation

    Zeki, Mustafa | Tinaztepe, Ramazan | Tatar, Salih | Ulusoy, Suleyman | Al-Hajj, Rami

    Fractal and Fractional, Vol. 7 (2023), Iss. 5 P.371

    https://doi.org/10.3390/fractalfract7050371 [Citations: 1]
  172. A preconditioned fast Hermite finite element method for space-fractional diffusion equations

    Zhao, Meng | Cheng, Aijie | Wang, Hong

    Discrete & Continuous Dynamical Systems - B, Vol. 22 (2017), Iss. 9 P.3529

    https://doi.org/10.3934/dcdsb.2017178 [Citations: 5]
  173. A Spectrally Accurate Approximation to Subdiffusion Equations Using the Log Orthogonal Functions

    Chen, Sheng | Shen, Jie | Zhang, Zhimin | Zhou, Zhi

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 2 P.A849

    https://doi.org/10.1137/19M1281927 [Citations: 30]
  174. Space-time pseudospectral method for the variable-order space-time fractional diffusion equation

    Gupta, Rupali | Kumar, Sushil

    Mathematical Sciences, Vol. 18 (2024), Iss. 3 P.419

    https://doi.org/10.1007/s40096-023-00510-7 [Citations: 4]
  175. Complex Turing patterns in chaotic dynamics of autocatalytic reactions with the Caputo fractional derivative

    Owolabi, Kolade M. | Agarwal, Ravi P. | Pindza, Edson | Bernstein, Swanhild | Osman, Mohamed S.

    Neural Computing and Applications, Vol. 35 (2023), Iss. 15 P.11309

    https://doi.org/10.1007/s00521-023-08298-2 [Citations: 21]
  176. On banded M-splitting iteration methods for solving discretized spatial fractional diffusion equations

    Bai, Zhong-Zhi | Lu, Kang-Ya

    BIT Numerical Mathematics, Vol. 59 (2019), Iss. 1 P.1

    https://doi.org/10.1007/s10543-018-0727-8 [Citations: 17]
  177. The non-uniform L1-type scheme coupling the finite volume method for the time–space fractional diffusion equation with variable coefficients

    Yu, Hui | Liu, Fawang | Li, Mingxia | Anh, Vo V.

    Journal of Computational and Applied Mathematics, Vol. 429 (2023), Iss. P.115179

    https://doi.org/10.1016/j.cam.2023.115179 [Citations: 0]
  178. Radial point interpolation collocation method based approximation for 2D fractional equation models

    Liu, Qingxia | Zhuang, Pinghui | Liu, Fawang | Zheng, Minling | Chen, Shanzhen

    Computers & Mathematics with Applications, Vol. 97 (2021), Iss. P.153

    https://doi.org/10.1016/j.camwa.2021.05.007 [Citations: 1]
  179. A New Sixth-Order Finite Difference WENO Scheme for Fractional Differential Equations

    Zhang, Yan | Deng, Weihua | Zhu, Jun

    Journal of Scientific Computing, Vol. 87 (2021), Iss. 3

    https://doi.org/10.1007/s10915-021-01486-z [Citations: 8]
  180. Numerical inversions for diffusion coefficients in two-dimensional space fractional diffusion equation

    Chi, Guangsheng | Li, Gongsheng

    Inverse Problems in Science and Engineering, Vol. 26 (2018), Iss. 7 P.996

    https://doi.org/10.1080/17415977.2017.1377705 [Citations: 2]
  181. Numerical Methods for Fractional Differentiation

    Application to Partial Fractional Differential Equation

    Owolabi, Kolade M. | Atangana, Abdon

    2019

    https://doi.org/10.1007/978-981-15-0098-5_8 [Citations: 0]
  182. A finite element approximation for a class of Caputo time-fractional diffusion equations

    Sidi Ammi, Moulay Rchid | Jamiai, Ismail | Torres, Delfim F.M.

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 5 P.1334

    https://doi.org/10.1016/j.camwa.2019.05.031 [Citations: 32]
  183. A generalized-Jacobi-function spectral method for space-time fractional reaction-diffusion equations with viscosity terms

    Yu, Zhe | Wu, Boying | Sun, Jiebao | Liu, Wenjie

    Applied Numerical Mathematics, Vol. 152 (2020), Iss. P.355

    https://doi.org/10.1016/j.apnum.2019.11.015 [Citations: 6]
  184. Multigrid Waveform Relaxation for the Time-Fractional Heat Equation

    Gaspar, Francisco J. | Rodrigo, Carmen

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 4 P.A1201

    https://doi.org/10.1137/16M1090193 [Citations: 21]
  185. High-Order Numerical Methods for Solving Time Fractional Partial Differential Equations

    Li, Zhiqiang | Liang, Zongqi | Yan, Yubin

    Journal of Scientific Computing, Vol. 71 (2017), Iss. 2 P.785

    https://doi.org/10.1007/s10915-016-0319-1 [Citations: 29]
  186. Preconditioned iterative methods for fractional diffusion models in finance

    Meng, Qing-Jiang | Ding, Deng | Sheng, Qin

    Numerical Methods for Partial Differential Equations, Vol. 31 (2015), Iss. 5 P.1382

    https://doi.org/10.1002/num.21948 [Citations: 18]
  187. Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation

    Hu, Xiaozhe | Rodrigo, Carmen | Gaspar, Francisco J.

    Journal of Computational Physics, Vol. 416 (2020), Iss. P.109540

    https://doi.org/10.1016/j.jcp.2020.109540 [Citations: 6]
  188. An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients

    Fang, Zhi-Wei | Sun, Hai-Wei | Wei, Hui-Qin

    International Journal of Computer Mathematics, Vol. 97 (2020), Iss. 3 P.523

    https://doi.org/10.1080/00207160.2019.1579313 [Citations: 5]
  189. Spectral method for the fractional diffusion-wave equation with variable coefficients

    Chen, Wenping | Lu, Shujuan | Chen, Hu | Liu, Haiyu

    2017 29th Chinese Control And Decision Conference (CCDC), (2017), P.7827

    https://doi.org/10.1109/CCDC.2017.7978614 [Citations: 0]
  190. Numerical Approximation for Fractional Neutron Transport Equation

    Zhao, Zhengang | Zheng, Yunying | Ahmad, Imtiaz

    Journal of Mathematics, Vol. 2021 (2021), Iss. P.1

    https://doi.org/10.1155/2021/6676640 [Citations: 2]
  191. An accurate and efficient space-time Galerkin spectral method for the subdiffusion equation

    Zeng, Wei | Xu, Chuanju

    Science China Mathematics, Vol. 67 (2024), Iss. 10 P.2387

    https://doi.org/10.1007/s11425-022-2094-x [Citations: 1]
  192. A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations

    Colbrook, Matthew J. | Ayton, Lorna J.

    Journal of Computational Physics, Vol. 454 (2022), Iss. P.110995

    https://doi.org/10.1016/j.jcp.2022.110995 [Citations: 10]
  193. Finite Element Multigrid Method for the Boundary Value Problem of Fractional Advection Dispersion Equation

    Zhou, Zhiqiang | Wu, Hongying

    Journal of Applied Mathematics, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/385463 [Citations: 5]
  194. The spectral collocation method for solving a fractional integro-differential equation

    Wu, Chuanhua | Wang, Ziqiang

    AIMS Mathematics, Vol. 7 (2022), Iss. 6 P.9577

    https://doi.org/10.3934/math.2022532 [Citations: 7]
  195. Time-space spectral Galerkin method for time-fractional fourth-order partial differential equations

    Fakhar-Izadi, Farhad | Shabgard, Narges

    Journal of Applied Mathematics and Computing, Vol. 68 (2022), Iss. 6 P.4253

    https://doi.org/10.1007/s12190-022-01707-0 [Citations: 4]
  196. Fully spectral collocation method for nonlinear parabolic partial integro-differential equations

    Fakhar-Izadi, Farhad | Dehghan, Mehdi

    Applied Numerical Mathematics, Vol. 123 (2018), Iss. P.99

    https://doi.org/10.1016/j.apnum.2017.08.007 [Citations: 19]
  197. Fully Discrete Local Discontinuous Galerkin Approximation for Time-Space Fractional Subdiffusion/Superdiffusion Equations

    Qiu, Meilan | Mei, Liquan | Li, Dewang

    Advances in Mathematical Physics, Vol. 2017 (2017), Iss. P.1

    https://doi.org/10.1155/2017/4961797 [Citations: 1]
  198. Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations

    Wang, Hong | Yang, Danping

    SIAM Journal on Numerical Analysis, Vol. 51 (2013), Iss. 2 P.1088

    https://doi.org/10.1137/120892295 [Citations: 97]
  199. High order finite difference WENO schemes for fractional differential equations

    Deng, Weihua | Du, Shanda | Wu, Yujiang

    Applied Mathematics Letters, Vol. 26 (2013), Iss. 3 P.362

    https://doi.org/10.1016/j.aml.2012.10.005 [Citations: 28]
  200. ODE‐based double‐preconditioning for solving linear systems Aαx=b and f(A)x=b

    Antoine, Xavier | Lorin, Emmanuel

    Numerical Linear Algebra with Applications, Vol. 28 (2021), Iss. 6

    https://doi.org/10.1002/nla.2399 [Citations: 3]
  201. Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations

    Qiu, Meilan | Mei, Liquan | Yang, Ganshang

    Advances in Difference Equations, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13662-016-1057-2 [Citations: 152]
  202. Numerical approaches to fractional calculus and fractional ordinary differential equation

    Li, Changpin | Chen, An | Ye, Junjie

    Journal of Computational Physics, Vol. 230 (2011), Iss. 9 P.3352

    https://doi.org/10.1016/j.jcp.2011.01.030 [Citations: 185]
  203. A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion

    Cheng, Aijie | Wang, Hong | Wang, Kaixin

    Numerical Methods for Partial Differential Equations, Vol. 31 (2015), Iss. 1 P.253

    https://doi.org/10.1002/num.21901 [Citations: 30]
  204. Exponential Convergence of hp-discontinuous Galerkin Method for Nonlinear Caputo Fractional Differential Equations

    Chen, Yanping | Wang, Lina | Yi, Lijun

    Journal of Scientific Computing, Vol. 92 (2022), Iss. 3

    https://doi.org/10.1007/s10915-022-01947-z [Citations: 5]
  205. Mixed spline function method for reaction–subdiffusion equations

    Ding, Hengfei | Li, Changpin

    Journal of Computational Physics, Vol. 242 (2013), Iss. P.103

    https://doi.org/10.1016/j.jcp.2013.02.014 [Citations: 29]
  206. Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations

    Zayernouri, Mohsen | Karniadakis, George Em

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 4 P.B684

    https://doi.org/10.1137/130940967 [Citations: 86]
  207. A fast solver for spectral elements applied to fractional differential equations using hierarchical matrix approximation

    Li, Xianjuan | Mao, Zhiping | Wang, Nan | Song, Fangying | Wang, Hong | Karniadakis, George Em

    Computer Methods in Applied Mechanics and Engineering, Vol. 366 (2020), Iss. P.113053

    https://doi.org/10.1016/j.cma.2020.113053 [Citations: 8]
  208. A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equations

    Mao, Wenting | Chen, Yanping | Wang, Huasheng

    Numerical Algorithms, Vol. 89 (2022), Iss. 3 P.1095

    https://doi.org/10.1007/s11075-021-01147-0 [Citations: 3]
  209. Spectral direction splitting methods for two-dimensional space fractional diffusion equations

    Song, Fangying | Xu, Chuanju

    Journal of Computational Physics, Vol. 299 (2015), Iss. P.196

    https://doi.org/10.1016/j.jcp.2015.07.011 [Citations: 34]
  210. A Meshless Local Radial Point Collocation Method for Simulating the Time-Fractional Convection-Diffusion Equations on Surfaces

    Qiao, Yuanyang | Feng, Xinlong | He, Yinnian

    International Journal of Computational Methods, Vol. 18 (2021), Iss. 05 P.2150006

    https://doi.org/10.1142/S0219876221500067 [Citations: 4]
  211. The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method

    Qasemi, Samaneh | Rostamy, Davood | Abdollahi, Nazdar

    BIT Numerical Mathematics, Vol. 59 (2019), Iss. 1 P.183

    https://doi.org/10.1007/s10543-018-0731-z [Citations: 7]
  212. Numerical Caputo Differentiation by Radial Basis Functions

    Li, Ming | Wang, Yujiao | Ling, Leevan

    Journal of Scientific Computing, Vol. 62 (2015), Iss. 1 P.300

    https://doi.org/10.1007/s10915-014-9857-6 [Citations: 9]
  213. Finite Difference Approximation of a Generalized Time-Fractional Telegraph Equation

    Delić, Aleksandra | Jovanović, Boško S. | Živanović, Sandra

    Computational Methods in Applied Mathematics, Vol. 20 (2020), Iss. 4 P.595

    https://doi.org/10.1515/cmam-2018-0291 [Citations: 5]
  214. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

    A Novel Spectral Method for the Subdiffusion Equation

    Xu, Chuanju | Zeng, Wei

    2023

    https://doi.org/10.1007/978-3-031-20432-6_3 [Citations: 0]
  215. Numerical Methods for Solving Space Fractional Partial Differential Equations Using Hadamard Finite-Part Integral Approach

    Wang, Yanyong | Yan, Yubin | Hu, Ye

    Communications on Applied Mathematics and Computation, Vol. 1 (2019), Iss. 4 P.505

    https://doi.org/10.1007/s42967-019-00036-7 [Citations: 1]
  216. Fast numerical solution for fractional diffusion equations by exponential quadrature rule

    Zhang, Lu | Sun, Hai-Wei | Pang, Hong-Kui

    Journal of Computational Physics, Vol. 299 (2015), Iss. P.130

    https://doi.org/10.1016/j.jcp.2015.07.001 [Citations: 25]
  217. A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain

    Yu, Hao | Wu, Boying | Zhang, Dazhi

    Applied Mathematics and Computation, Vol. 331 (2018), Iss. P.96

    https://doi.org/10.1016/j.amc.2018.02.050 [Citations: 2]
  218. On a Legendre Tau Method for Fractional Boundary Value Problems with a Caputo Derivative

    Ito, Kazufumi | Jin, Bangti | Takeuchi, Tomoya

    Fractional Calculus and Applied Analysis, Vol. 19 (2016), Iss. 2 P.357

    https://doi.org/10.1515/fca-2016-0019 [Citations: 5]
  219. Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion Equations

    Huang, Yun-Chi | Chou, Lot-Kei | Lei, Siu-Long

    Journal of Scientific Computing, Vol. 96 (2023), Iss. 1

    https://doi.org/10.1007/s10915-023-02259-6 [Citations: 0]
  220. Hierarchical matrix approximations for space-fractional diffusion equations

    Boukaram, Wajih | Lucchesi, Marco | Turkiyyah, George | Le Maître, Olivier | Knio, Omar | Keyes, David

    Computer Methods in Applied Mechanics and Engineering, Vol. 369 (2020), Iss. P.113191

    https://doi.org/10.1016/j.cma.2020.113191 [Citations: 5]
  221. On variational properties of balanced central fractional derivatives

    Xu, Yufeng | Sun, Hai-Wei | Sheng, Qin

    International Journal of Computer Mathematics, Vol. 95 (2018), Iss. 6-7 P.1195

    https://doi.org/10.1080/00207160.2017.1398324 [Citations: 9]
  222. An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation

    Oulmelk, A. | Afraites, L. | Hadri, A.

    Computational and Applied Mathematics, Vol. 42 (2023), Iss. 1

    https://doi.org/10.1007/s40314-023-02206-z [Citations: 7]
  223. A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains

    Chen, Xu | Deng, Si-Wen | Lei, Siu-Long

    Journal of Scientific Computing, Vol. 80 (2019), Iss. 2 P.1033

    https://doi.org/10.1007/s10915-019-00966-7 [Citations: 3]
  224. An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations

    Burrage, Kevin | Hale, Nicholas | Kay, David

    SIAM Journal on Scientific Computing, Vol. 34 (2012), Iss. 4 P.A2145

    https://doi.org/10.1137/110847007 [Citations: 175]
  225. A Unified Petrov–Galerkin Spectral Method and Fast Solver for Distributed-Order Partial Differential Equations

    Samiee, Mehdi | Kharazmi, Ehsan | Meerschaert, Mark M. | Zayernouri, Mohsen

    Communications on Applied Mathematics and Computation, Vol. 3 (2021), Iss. 1 P.61

    https://doi.org/10.1007/s42967-020-00070-w [Citations: 7]
  226. The Galerkin finite element method for a multi-term time-fractional diffusion equation

    Jin, Bangti | Lazarov, Raytcho | Liu, Yikan | Zhou, Zhi

    Journal of Computational Physics, Vol. 281 (2015), Iss. P.825

    https://doi.org/10.1016/j.jcp.2014.10.051 [Citations: 224]
  227. A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations

    Wang, Hong | Du, Ning

    Journal of Computational Physics, Vol. 240 (2013), Iss. P.49

    https://doi.org/10.1016/j.jcp.2012.07.045 [Citations: 93]
  228. A weak Galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients

    Toprakseven, Şuayip

    Applied Numerical Mathematics, Vol. 168 (2021), Iss. P.1

    https://doi.org/10.1016/j.apnum.2021.05.021 [Citations: 24]
  229. Quasi‐Toeplitz splitting iteration methods for unsteady space‐fractional diffusion equations

    Dai, Ping‐Fei | Wu, Qing‐Biao | Zhu, Sheng‐Feng

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 2 P.699

    https://doi.org/10.1002/num.22320 [Citations: 5]
  230. A parallel in time/spectral collocation combined with finite difference method for the time fractional differential equations

    Li, Xianjuan | Su, Yanhui

    Journal of Algorithms & Computational Technology, Vol. 15 (2021), Iss.

    https://doi.org/10.1177/17483026211008409 [Citations: 4]
  231. Spectral element method with geometric mesh for two-sided fractional differential equations

    Mao, Zhiping | Shen, Jie

    Advances in Computational Mathematics, Vol. 44 (2018), Iss. 3 P.745

    https://doi.org/10.1007/s10444-017-9561-9 [Citations: 31]
  232. An optimal control approach for determining the source term in fractional diffusion equation by different cost functionals

    Oulmelk, A. | Afraites, L. | Hadri, A. | Nachaoui, M.

    Applied Numerical Mathematics, Vol. 181 (2022), Iss. P.647

    https://doi.org/10.1016/j.apnum.2022.07.009 [Citations: 12]
  233. Theoretical and Numerical Aspect of Fractional Differential Equations with Purely Integral Conditions

    Brahimi, Saadoune | Merad, Ahcene | Kılıçman, Adem

    Mathematics, Vol. 9 (2021), Iss. 16 P.1987

    https://doi.org/10.3390/math9161987 [Citations: 0]
  234. Numerical analysis of a two-parameter fractional telegraph equation

    Ford, Neville J. | Rodrigues, M. Manuela | Xiao, Jingyu | Yan, Yubin

    Journal of Computational and Applied Mathematics, Vol. 249 (2013), Iss. P.95

    https://doi.org/10.1016/j.cam.2013.02.009 [Citations: 25]
  235. Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation

    Gong, Xuhong | Wei, Ting

    Inverse Problems in Science and Engineering, Vol. 27 (2019), Iss. 11 P.1577

    https://doi.org/10.1080/17415977.2018.1539481 [Citations: 21]
  236. Operator-Based Uncertainty Quantification of Stochastic Fractional Partial Differential Equations

    Kharazmi, Ehsan | Zayernouri, Mohsen

    Journal of Verification, Validation and Uncertainty Quantification, Vol. 4 (2019), Iss. 4

    https://doi.org/10.1115/1.4046093 [Citations: 2]
  237. Numerical solution of time fractional diffusion systems

    Burrage, Kevin | Cardone, Angelamaria | D'Ambrosio, Raffaele | Paternoster, Beatrice

    Applied Numerical Mathematics, Vol. 116 (2017), Iss. P.82

    https://doi.org/10.1016/j.apnum.2017.02.004 [Citations: 44]
  238. Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation

    Yang, Fan | Ren, Yu-Peng | Li, Xiao-Xiao | Li, Dun-Gang

    Boundary Value Problems, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13661-017-0898-2 [Citations: 12]
  239. Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions

    Owolabi, Kolade M | Atangana, Abdon

    Advances in Difference Equations, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13662-017-1286-z [Citations: 18]
  240. An efficient Fourier spectral exponential time differencing method for the space-fractional nonlinear Schrödinger equations

    Liang, Xiao | Khaliq, Abdul Q.M.

    Computers & Mathematics with Applications, Vol. 75 (2018), Iss. 12 P.4438

    https://doi.org/10.1016/j.camwa.2018.03.042 [Citations: 16]
  241. A unified spectral method for FPDEs with two-sided derivatives; part I: A fast solver

    Samiee, Mehdi | Zayernouri, Mohsen | Meerschaert, Mark M.

    Journal of Computational Physics, Vol. 385 (2019), Iss. P.225

    https://doi.org/10.1016/j.jcp.2018.02.014 [Citations: 18]