Year: 2009
Communications in Computational Physics, Vol. 5 (2009), Iss. 2-4 : pp. 426–441
Abstract
New direct spectral solvers for the 3D Helmholtz equation in a finite cylindrical region are presented. A purely variational (no collocation) formulation of the problem is adopted, based on Fourier series expansion of the angular dependence and Legendre polynomials for the axial dependence. A new Jacobi basis is proposed for the radial direction overcoming the main disadvantages of previously developed bases for the Dirichlet problem. Nonhomogeneous Dirichlet boundary conditions are enforced by a discrete lifting and the vector problem is solved by means of a classical uncoupling technique. In the considered formulation, boundary conditions on the axis of the cylindrical domain are never mentioned, by construction. The solution algorithms for the scalar equations are based on double diagonalization along the radial and axial directions. The spectral accuracy of the proposed algorithms is verified by numerical tests.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2009-CiCP-7741
Communications in Computational Physics, Vol. 5 (2009), Iss. 2-4 : pp. 426–441
Published online: 2009-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 16