The Recursive Formulation of Particular Solutions for Some Elliptic PDEs with Polynomial Source Functions
Year: 2009
Communications in Computational Physics, Vol. 5 (2009), Iss. 5 : pp. 942–958
Abstract
In this paper we develop an efficient meshless method for solving inhomogeneous elliptic partial differential equations. We first approximate the source function by Chebyshev polynomials. We then focus on how to find a polynomial particular solution when the source function is a polynomial. Through the principle of the method of undetermined coefficients and a proper arrangement of the terms for the polynomial particular solution to be determined, the coefficients of the particular solution satisfy a triangular system of linear algebraic equations. Explicit recursive formulas for the coefficients of the particular solutions are derived for different types of elliptic PDEs. The method is further incorporated into the method of fundamental solutions for solving inhomogeneous elliptic PDEs. Numerical results show that our approach is efficient and accurate.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2009-CiCP-7772
Communications in Computational Physics, Vol. 5 (2009), Iss. 5 : pp. 942–958
Published online: 2009-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 17