Year: 2009
Communications in Computational Physics, Vol. 6 (2009), Iss. 4 : pp. 699–729
Abstract
In this paper we analyze a long standing problem of the appearance of spurious, non-physical solutions arising in the application of the effective mass theory to low dimensional nanostructures. The theory results in a system of coupled eigenvalue PDEs that is usually supplemented by interface boundary conditions that can be derived from a variational formulation of the problem. We analyze such a system for the envelope functions and show that a failure to restrict their Fourier expansion coefficients to small k components would lead to the appearance of non-physical solutions. We survey the existing methodologies to eliminate this difficulty and propose a simple and effective solution. This solution is demonstrated on an example of a two-band model for both bulk materials and low-dimensional nanostructures. Finally, based on the above requirement of small k, we derive a model for nanostructures with cylindrical symmetry and apply the developed model to the analysis of quantum dots using an eight-band model.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2009-CiCP-7701
Communications in Computational Physics, Vol. 6 (2009), Iss. 4 : pp. 699–729
Published online: 2009-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 31