Year: 2009
Communications in Computational Physics, Vol. 6 (2009), Iss. 5 : pp. 1063–1094
Abstract
Inspiral of binary black holes occurs over a time-scale of many orbits, far longer than the dynamical time-scale of the individual black holes. Explicit evolutions of a binary system therefore require excessively many time-steps to capture interesting dynamics. We present a strategy to overcome the Courant-Friedrichs-Lewy condition in such evolutions, one relying on modern implicit-explicit ODE solvers and multidomain spectral methods for elliptic equations. Our analysis considers the model problem of a forced scalar field propagating on a generic curved background. Nevertheless, we encounter and address a number of issues pertinent to the binary black hole problem in full general relativity. Specializing to the Schwarzschild geometry in Kerr-Schild coordinates, we document the results of several numerical experiments testing our strategy.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2009-CiCP-7717
Communications in Computational Physics, Vol. 6 (2009), Iss. 5 : pp. 1063–1094
Published online: 2009-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 32