Year: 2008
Communications in Computational Physics, Vol. 3 (2008), Iss. 3 : pp. 519–581
Abstract
For simple hydrodynamic solutions, where the pressure and the velocity are polynomial functions of the coordinates, exact microscopic solutions are constructed for the two-relaxation-time (TRT) Lattice Boltzmann model with variable forcing and supported by exact boundary schemes. We show how simple numerical and analytical solutions can be interrelated for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) multi-reflection (MR) type schemes. Special care is taken to adapt them for corners, to examine the uniqueness of the obtained steady solutions and staggered invariants, to validate their exact parametrization by the non-dimensional hydrodynamic and a "kinetic" (collision) number. We also present an inlet/outlet "constant mass flux" condition. We show, both analytically and numerically, that the kinetic boundary schemes may result in the appearance of Knudsen layers which are beyond the methodology of the Chapman-Enskog analysis. Time dependent Dirichlet boundary conditions are investigated for pulsatile flow driven by an oscillating pressure drop or forcing. Analytical approximations are constructed in order to extend the pulsatile solution for compressible regimes.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2008-CiCP-7865
Communications in Computational Physics, Vol. 3 (2008), Iss. 3 : pp. 519–581
Published online: 2008-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 63