On Applicability of Poisson-Boltzmann Equation for Micro- and Nanoscale Electroosmotic Flows

On Applicability of Poisson-Boltzmann Equation for Micro- and Nanoscale Electroosmotic Flows

Year:    2008

Communications in Computational Physics, Vol. 3 (2008), Iss. 5 : pp. 1087–1099

Abstract

The applicability of the Poisson-Boltzmann model for micro- and nanoscale electroosmotic flows is a very important theoretical and engineering problem. In this contribution we investigate this problem at two aspects: first the high ionic concentration effect on the Boltzmann distribution assumption in the diffusion layer is studied by comparisons with the molecular dynamics (MD) simulation results; then the electrical double layer (EDL) interaction effect caused by low ionic concentrations in small channels is discussed by comparing with the dynamic model described by the coupled Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations. The results show that the Poisson-Boltzmann (PB) model is applicable in a very wide range: (i) the PB model can still provide good predictions of the ions density profiles up to a very high ionic concentration (∼ 1 M) in the diffusion layer; (ii) the PB model predicts the net charge density accurately as long as the EDL thickness is smaller than the channel width and then overrates the net charge density profile as the EDL thickness increasing, and the predicted electric potential profile is still very accurate up to a very strong EDL interaction (λ/W ∼10).

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2008-CiCP-7889

Communications in Computational Physics, Vol. 3 (2008), Iss. 5 : pp. 1087–1099

Published online:    2008-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    13

Keywords: