A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems

Year:    2008

Communications in Computational Physics, Vol. 4 (2008), Iss. 1 : pp. 135–160

Abstract

In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemistry. We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint. Matched asymptotic approximations for the problem are presented to locate the positions and characterize the widths of boundary layers and/or interior layers in the solution. A uniformly convergent numerical method is proposed by using the normalized gradient flow and piecewise uniform mesh techniques based on the asymptotic approximations for the problem. Extensive numerical results are reported to demonstrate the effectiveness of our numerical method for the problems. Finally, the method is applied to compute ground and excited states of Bose-Einstein condensation in the semiclassical regime and some conclusive findings are reported. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2008-CiCP-7784

Communications in Computational Physics, Vol. 4 (2008), Iss. 1 : pp. 135–160

Published online:    2008-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords: