Year: 2006
Communications in Computational Physics, Vol. 1 (2006), Iss. 5 : pp. 874–885
Abstract
An augmented method is proposed for solving stationary incompressible Stokes equations with a Dirichlet boundary condition along parts of the boundary. In this approach, the normal derivative of the pressure along the parts of the boundary is introduced as an additional variable and it is solved by the GMRES iterative method. The dimension of the augmented variable in discretization is the number of grid points along the boundary which is O(N). Each GMRES iteration (or one matrix-vector multiplication) requires three fast Poisson solvers for the pressure and the velocity. In our numerical experiments, only a few iterations are needed. We have also combined the augmented approach for Stokes equations involving interfaces, discontinuities, and singularities.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2006-CiCP-7984
Communications in Computational Physics, Vol. 1 (2006), Iss. 5 : pp. 874–885
Published online: 2006-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 12
Keywords: Incompressible Stokes equations