Hilbert-Schmidtness of Submodules in $H^2 (\mathbb{D}^2 )$ Containing $θ(z)−\varphi (w)$

Hilbert-Schmidtness of Submodules in $H^2 (\mathbb{D}^2 )$ Containing $θ(z)−\varphi (w)$

Year:    2023

Author:    Chao Zu, Yixin Yang, Yufeng Lu

Communications in Mathematical Research , Vol. 39 (2023), Iss. 3 : pp. 331–341

Abstract

A closed subspace $M$ of the Hardy space $H^2(\mathbb{D}^2)$ over the bidisk is called submodule if it is invariant under multiplication by coordinate functions $z$ and $w.$ Whether every finitely generated submodule is Hilbert-Schmidt is an unsolved problem. This paper proves that every finitely generated submodule $M$ containing $θ(z)−\varphi(w)$ is Hilbert-Schmidt, where $θ(z),$ $\varphi(w)$ are two finite Blaschke products.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cmr.2022-0034

Communications in Mathematical Research , Vol. 39 (2023), Iss. 3 : pp. 331–341

Published online:    2023-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Hardy space over the bidisk Hilbert-Schmidt submodule fringe operator Fredholm index.

Author Details

Chao Zu

Yixin Yang

Yufeng Lu