Armendariz Property of $k[x,y]$ Modulo Monomial Ideals

Armendariz Property of $k[x,y]$ Modulo Monomial Ideals

Year:    2022

Author:    Ying Guo, Xiankun Du, Xiaowei Xu

Communications in Mathematical Research , Vol. 38 (2022), Iss. 3 : pp. 422–430

Abstract

In this paper, we give equivalent conditions for the factor rings of the polynomial ring $k[x,y]$ modulo monomial ideals to be Armendariz rings, where $k$ is a field. For an ideal $I$ with 2 or 3 monomial generators, or $n$ homogeneous monomial generators, such that $k[x,y]/I$ is an Armendariz ring, we characterize the minimal generator set $G(I)$ of $I.$

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cmr.2022-0005

Communications in Mathematical Research , Vol. 38 (2022), Iss. 3 : pp. 422–430

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    Armendariz ring polynomial ring monomial ideal.

Author Details

Ying Guo

Xiankun Du

Xiaowei Xu