Singly Covered Minimal Elements of Linked Partitions and Cycles of Permutations

Singly Covered Minimal Elements of Linked Partitions and Cycles of Permutations

Year:    2019

Author:    Wenkui Guo, Feifei Niu

Communications in Mathematical Research , Vol. 35 (2019), Iss. 1 : pp. 75–80

Abstract

Linked partitions were introduced by Dykema (Dykema K J. Multilinear function series and transforms in free probability theory. $Adv$. $Math$., 2005, 208(1): 351–407) in the study of the unsymmetrized T-transform in free probability theory. Permutation is one of the most classical combinatorial structures. According to the linear representation of linked partitions, Chen $et$ $al$. (Chen W Y C, Wu S Y J, Yan C H. Linked partitions and linked cycles. $European$ $J$. $Combin$., 2008, 29(6): 1408–1426) defined the concept of singly covered minimal elements. Let $L(n,\,k)$ denote the set of linked partitions of $[n]$ with $k$ singly covered minimal elements and let $P(n,\,k)$ denote the set of permutations of $[n]$ with $k$ cycles. In this paper, we mainly establish two bijections between $L(n,\,k)$ and $P(n,\,k)$. The two bijections from a different perspective show the one-to-one correspondence between the singly covered minimal elements in $L(n,\,k)$ and the cycles in $P(n,\,k)$. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2019.01.08

Communications in Mathematical Research , Vol. 35 (2019), Iss. 1 : pp. 75–80

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    singly covered minimal element linked partition permutation cycle

Author Details

Wenkui Guo

Feifei Niu