Planar Cubic $G^1$ Hermite Interpolant with Minimal Quadratic Oscillation in Average

Planar Cubic $G^1$ Hermite Interpolant with Minimal Quadratic Oscillation in Average

Year:    2019

Author:    Juncheng Li

Communications in Mathematical Research , Vol. 35 (2019), Iss. 3 : pp. 219–224

Abstract

In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2019.03.03

Communications in Mathematical Research , Vol. 35 (2019), Iss. 3 : pp. 219–224

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    cubic Hermite interpolant free parameter optimization shape-preserving interpolant

Author Details

Juncheng Li