Processing math: 100%
Journals
Resources
About Us
Open Access

Planar Cubic G1 Hermite Interpolant with Minimal Quadratic Oscillation in Average

Planar Cubic $G^1$ Hermite Interpolant with Minimal Quadratic Oscillation in Average

Year:    2019

Author:    Juncheng Li

Communications in Mathematical Research , Vol. 35 (2019), Iss. 3 : pp. 219–224

Abstract

In this paper we apply a new method to choose suitable free parameters of the planar cubic G1 Hermite interpolant. The method provides the cubic G1 Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2019.03.03

Communications in Mathematical Research , Vol. 35 (2019), Iss. 3 : pp. 219–224

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    cubic Hermite interpolant free parameter optimization shape-preserving interpolant

Author Details

Juncheng Li