On the Group of $p$-Endotrivial $kG$-Modules

On the Group of $p$-Endotrivial $kG$-Modules

Year:    2018

Author:    Wenlin Huang

Communications in Mathematical Research , Vol. 34 (2018), Iss. 2 : pp. 106–116

Abstract

In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2018.02.02

Communications in Mathematical Research , Vol. 34 (2018), Iss. 2 : pp. 106–116

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    $p$-endotrivial module the group of $p$-endotrivial modules endo-permutation module Dade group

Author Details

Wenlin Huang