Journals
Resources
About Us
Open Access

Stable $t$-Structures and Homotopy Category of Strongly Copure Projective Modules

Stable $t$-Structures and Homotopy Category of Strongly Copure Projective Modules

Year:    2017

Author:    Xin Ma, Youyi Zhao

Communications in Mathematical Research , Vol. 33 (2017), Iss. 3 : pp. 281–288

Abstract

In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$. We show that the existence of a right recollement of $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ with respect to $\mathcal{K}^{–,bscp}(\mathcal{SCP})$, $\mathcal{K}_{bscp}(\mathcal{SCP})$ and $\mathcal{K}^{∞,bscp}(\mathcal{SCP})$ has the homotopy category of strongly copure projective acyclic complexes as a triangulated subcategory in some cases.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2017.03.08

Communications in Mathematical Research , Vol. 33 (2017), Iss. 3 : pp. 281–288

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    homotopy category recollement stable $t$-structure

Author Details

Xin Ma

Youyi Zhao