Additive Maps Preserving the Star Partial Order on $\mathcal{B}(\mathcal{H})$

Additive Maps Preserving the Star Partial Order on $\mathcal{B}(\mathcal{H})$

Year:    2015

Author:    Cui Xi, Guoxing JI

Communications in Mathematical Research , Vol. 31 (2015), Iss. 1 : pp. 89–96

Abstract

Let $\mathcal{B}(\mathcal{H})$ be the $C^∗$-algebra of all bounded linear operators on a complex Hilbert space $\mathcal{H}$. It is proved that an additive surjective map $φ$ on $\mathcal{B}(\mathcal{H})$ preserving the star partial order in both directions if and only if one of the following assertions holds. (1) There exist a nonzero complex number $α$ and two unitary operators $\boldsymbol{U}$ and $\boldsymbol{V}$ on $\mathcal{H}$ such that $φ(\boldsymbol{X}) = α\boldsymbol{UXV}$ or $φ(\boldsymbol{X}) = α\boldsymbol{UX}^∗\boldsymbol{V}$ for all $X ∈ \mathcal{B}(\mathcal{H})$. (2) There exist a nonzero $α$ and two anti-unitary operators $\boldsymbol{U}$ and $\boldsymbol{V}$ on $\mathcal{H}$ such that $φ(\boldsymbol{X}) = α\boldsymbol{UXV}$ or $φ(\boldsymbol{X}) = α\boldsymbol{UX}^∗\boldsymbol{V}$ for all $X ∈ \mathcal{B}(\mathcal{H})$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2015.01.10

Communications in Mathematical Research , Vol. 31 (2015), Iss. 1 : pp. 89–96

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    linear operator star partial order additive map.

Author Details

Cui Xi

Guoxing JI