Notes on Automorphisms of Prime Rings

Notes on Automorphisms of Prime Rings

Year:    2015

Author:    Shuliang Huang

Communications in Mathematical Research , Vol. 31 (2015), Iss. 3 : pp. 193–198

Abstract

Let $R$ be a prime ring, $L$ a noncentral Lie ideal and $σ$ a nontrivial automorphism of $R$ such that $u^sσ(u)u^t = 0$ for all $u ∈ L$, where $s$, $t$ are fixed non-negative integers. If either char$R > s + t$ or char$R = 0$, then $R$ satisfies $s_4$, the standard identity in four variables. We also examine the identity $(σ([x, y])−[x, y])^n = 0$ for all $x, y ∈ I$, where $I$ is a nonzero ideal of $R$ and $n$ is a fixed positive integer. If either char$R > n$ or char$R = 0$, then $R$ is commutative.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2015.03.01

Communications in Mathematical Research , Vol. 31 (2015), Iss. 3 : pp. 193–198

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    prime ring Lie ideal automorphism.

Author Details

Shuliang Huang