Co-Commuting Mappings of Generalized Matrix Algebras

Co-Commuting Mappings of Generalized Matrix Algebras

Year:    2015

Author:    Xinfeng Liang, Zhankui Xiao

Communications in Mathematical Research , Vol. 31 (2015), Iss. 4 : pp. 311–319

Abstract

Let $\mathcal{G}$ be a generalized matrix algebra over a commutative ring $\mathcal{R}$ and $Z(\mathcal{G})$ be the center of $\mathcal{G}$. Suppose that $F, T : \mathcal{G} → \mathcal{G}$ are two co-commuting $\mathcal{R}$-linear mappings, i.e., $F(x)x = xT(x)$ for all $x ∈ \mathcal{G}$. In this note, we study the question of when co-commuting mappings on $\mathcal{G}$ are proper.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.13447/j.1674-5647.2015.04.03

Communications in Mathematical Research , Vol. 31 (2015), Iss. 4 : pp. 311–319

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    co-commuting map generalized matrix algebra proper.

Author Details

Xinfeng Liang

Zhankui Xiao