Cocycle Perturbation on Banach Algebras

Cocycle Perturbation on Banach Algebras

Year:    2014

Author:    Luoyi Shi, Yujing Wu

Communications in Mathematical Research , Vol. 30 (2014), Iss. 1 : pp. 1–10

Abstract

Let $α$ be a flow on a Banach algebra $\mathcal{B}$, and $t → u_t$ a continuous function from $\boldsymbol{R}$ into the group of invertible elements of $\mathcal{B}$ such that $u_sα_s(u_t) = u_{s+t}, s, t ∈ \boldsymbol{R}$. Then $β_t$ = Ad$u_t ◦ α_t$, $t ∈ \boldsymbol{R}$ is also a flow on $\mathcal{B}$, where Ad$u_t(B) \triangleq u_tBu^{−1}_t$ for any $B ∈ \mathcal{B}$. $β$ is said to be a cocycle perturbation of $α$. We show that if $α$, $β$ are two flows on a nest algebra (or quasi-triangular algebra), then $β$ is a cocycle perturbation of $α$. And the flows on a nest algebra (or quasi-triangular algebra) are all uniformly continuous.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2014-CMR-18982

Communications in Mathematical Research , Vol. 30 (2014), Iss. 1 : pp. 1–10

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    cocycle perturbation inner perturbation nest algebra quasi-triangular algebra.

Author Details

Luoyi Shi

Yujing Wu