Analysis of Bifurcation and Stability on Solutions of a Lotka-Volterra Ecological System with Cubic Functional Responses and Diffusion

Analysis of Bifurcation and Stability on Solutions of a Lotka-Volterra Ecological System with Cubic Functional Responses and Diffusion

Year:    2012

Author:    Yunfeng Jia, Jianhua Wu, Hongkun Xu

Communications in Mathematical Research , Vol. 28 (2012), Iss. 2 : pp. 127–136

Abstract

This paper deals with a Lotka-Volterra ecological competition system with cubic functional responses and diffusion. We consider the stability of semi-trivial solutions by using spectrum analysis. Taking the growth rate as a bifurcation parameter and using the bifurcation theory, we discuss the existence and stability of the bifurcating solutions which emanate from the semi-trivial solutions.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2012-CMR-19053

Communications in Mathematical Research , Vol. 28 (2012), Iss. 2 : pp. 127–136

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Lotka-Volterra ecological system stability bifurcating solution.

Author Details

Yunfeng Jia

Jianhua Wu

Hongkun Xu