Non-Linear Invertible Maps that Preserve Staircase Subalgebras

Non-Linear Invertible Maps that Preserve Staircase Subalgebras

Year:    2012

Author:    Yanxia Zhao, Yuling Xia

Communications in Mathematical Research , Vol. 28 (2012), Iss. 3 : pp. 265–274

Abstract

Let $\mathcal{g}$ be the general linear Lie algebra consisting of all $n × n$ matrices over a field $F$ and with the usual bracket operation $[x, y] = xy − yx$. An invertible map $φ : \mathcal{g} → \mathcal{g}$ is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on $\mathcal{g}$ that preserve staircase subalgebras.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2012-CMR-19046

Communications in Mathematical Research , Vol. 28 (2012), Iss. 3 : pp. 265–274

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    general linear Lie algebra staircase subalgebra non-linear map.

Author Details

Yanxia Zhao

Yuling Xia