Year: 2012
Author: Yanxia Zhao, Yuling Xia
Communications in Mathematical Research , Vol. 28 (2012), Iss. 3 : pp. 265–274
Abstract
Let $\mathcal{g}$ be the general linear Lie algebra consisting of all $n × n$ matrices over a field $F$ and with the usual bracket operation $[x, y] = xy − yx$. An invertible map $φ : \mathcal{g} → \mathcal{g}$ is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on $\mathcal{g}$ that preserve staircase subalgebras.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2012-CMR-19046
Communications in Mathematical Research , Vol. 28 (2012), Iss. 3 : pp. 265–274
Published online: 2012-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 10
Keywords: general linear Lie algebra staircase subalgebra non-linear map.