Asymptotic Property of Approximation to $x^α$sgn$x$ by Newman Type Operators

Asymptotic Property of Approximation to $x^α$sgn$x$ by Newman Type Operators

Year:    2011

Author:    Qian Zhan, Shusheng Xu

Communications in Mathematical Research , Vol. 27 (2011), Iss. 3 : pp. 193–199

Abstract

The approximation of $|x|$ by rational functions is a classical rational problem. This paper deals with the rational approximation of the function $x^α$sgn$x$, which equals $|x|$ if $α = 1$. We construct a Newman type operator $r_n(x)$ and show $$\mathop{\rm min}\limits_{|x|≤1} \{|x^α{\rm sgn}x − r_n(x)| \} ∼ Cn^{−\frac{α}{2}}e^{−\sqrt{2nα}},$$ where $C$ is a constant depending on $α$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2011-CMR-19082

Communications in Mathematical Research , Vol. 27 (2011), Iss. 3 : pp. 193–199

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    7

Keywords:    rational approximation asymptotic property Newman type operator.

Author Details

Qian Zhan

Shusheng Xu