$\boldsymbol{Ψ}$-Bounded Solutions for a System of Difference Equations on $\mathbb{Z}$

$\boldsymbol{Ψ}$-Bounded Solutions for a System of Difference Equations on $\mathbb{Z}$

Year:    2011

Author:    Yuliang Han, Baifeng Liu, Xidong Sun

Communications in Mathematical Research , Vol. 27 (2011), Iss. 4 : pp. 331–342

Abstract

In this work we discuss the existence of $\boldsymbol{Ψ}$-bounded solutions for linear difference equations. We present a necessary and sufficient condition for the existence of $\boldsymbol{Ψ}$-bounded solutions for the linear nonhomogeneous difference equation $\boldsymbol{x}(n+1) = \boldsymbol{A}(n) \boldsymbol{x}(n) + \boldsymbol{f}(n)$ for every $\boldsymbol{Ψ}$-bounded sequence $\boldsymbol{f}(n)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2011-CMR-19077

Communications in Mathematical Research , Vol. 27 (2011), Iss. 4 : pp. 331–342

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    difference equation $\boldsymbol{Ψ}$-bounded solution existence.

Author Details

Yuliang Han

Baifeng Liu

Xidong Sun