Contact Finite Determinacy of Relative Map Germs

Contact Finite Determinacy of Relative Map Germs

Year:    2010

Author:    Liang Chen, Weizhi Sun, Donghe Pei

Communications in Mathematical Research , Vol. 26 (2010), Iss. 1 : pp. 1–6

Abstract

The strong contact finite determinacy of relative map germs is studied by means of classical singularity theory. We first give the definition of a strong relative contact equivalence (or $\mathcal{K}_{S,T}$ equivalence) and then prove two theorems which can be used to distinguish the contact finite determinacy of relative map germs, that is, $f$ is finite determined relative to $\mathcal{K}_{S,T}$ if and only if there exists a positive integer $k$, such that $\mathcal{M}^k (n)Ԑ(S; n)^p ⊂ T\mathcal{K}_{S,T}(f)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2010-CMR-19172

Communications in Mathematical Research , Vol. 26 (2010), Iss. 1 : pp. 1–6

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    $\mathcal{K}_{S T}$ equivalent the tangent space of an orbit relative deformation finite determined relative to $\mathcal{K}_{S T}$

Author Details

Liang Chen

Weizhi Sun

Donghe Pei