Lipschitz Estimates for Commutators of $N$-Dimensional Fractional Hardy Operators

Lipschitz Estimates for Commutators of $N$-Dimensional Fractional Hardy Operators

Year:    2009

Author:    Qingyu Zheng, Zunwei Fu

Communications in Mathematical Research , Vol. 25 (2009), Iss. 3 : pp. 241–245

Abstract

In this paper, it is proved that the commutator $\mathcal{H}_{β,b}$ which is generated by the $n$-dimensional fractional Hardy operator $\mathcal{H}_β$ and $b\in \dot{Λ}_α(\mathbb{R}^n)$ is bounded from $L^P(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, where $0<α<1,1<p, q<∞$ and $1/p-1/q=(α+β)/n$. Furthermore, the boundedness of $\mathcal{H}_{β,b}$ on the homogenous Herz space $\dot{K}_q^{α,p}(\mathbb{R}^n)$ is obtained.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2009-CMR-19331

Communications in Mathematical Research , Vol. 25 (2009), Iss. 3 : pp. 241–245

Published online:    2009-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    5

Keywords:    commutator $n$-dimensional fractional Hardy operator Lipschitz function. Herz space.

Author Details

Qingyu Zheng

Zunwei Fu