A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$
Year: 2009
Author: Huilin Zhu
Communications in Mathematical Research , Vol. 25 (2009), Iss. 3 : pp. 282–288
Abstract
By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2009-CMR-19336
Communications in Mathematical Research , Vol. 25 (2009), Iss. 3 : pp. 282–288
Published online: 2009-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 7
Keywords: binomial Diophantine equation fundamental unit factorization $p$-adic analysis method.