A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$

A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2  \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4  \end{matrix} \Bigg)$

Year:    2009

Author:    Huilin Zhu

Communications in Mathematical Research , Vol. 25 (2009), Iss. 3 : pp. 282–288

Abstract

By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2  \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4  \end{matrix} \Bigg)$.



You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2009-CMR-19336

Communications in Mathematical Research , Vol. 25 (2009), Iss. 3 : pp. 282–288

Published online:    2009-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    7

Keywords:    binomial Diophantine equation fundamental unit factorization $p$-adic analysis method.

Author Details

Huilin Zhu