Journals
Resources
About Us
Open Access

Normal Functions Concerning Shared Values

Normal Functions Concerning Shared Values

Year:    2009

Author:    Xiaojing Wang

Communications in Mathematical Research , Vol. 25 (2009), Iss. 5 : pp. 472–478

Abstract

In this paper we discuss normal functions concerning shared values. We obtain the following result. Let $\mathcal{F}$ be a family of meromorphic functions in the unit disc ∆, and $a$ be a nonzero finite complex number. If for any $f ∈\mathcal{F}$, the zeros of $f$ are of multiplicity, $f$ and $f′$ share $a$, then there exists a positive number $M$ such that for any $f ∈ \mathcal{F}, (1 − |z|^2 ) \frac{|f′(z)|}{1 + |f(z)|^2}  ≤ M$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2009-CMR-19363

Communications in Mathematical Research , Vol. 25 (2009), Iss. 5 : pp. 472–478

Published online:    2009-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    7

Keywords:    shared value normal family normal function.

Author Details

Xiaojing Wang